首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   3篇
安全科学   1篇
废物处理   1篇
综合类   5篇
基础理论   1篇
污染及防治   1篇
  2022年   4篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
排序方式: 共有9条查询结果,搜索用时 250 毫秒
1
1.
In this work, anaerobic digestion of pig slurry and successive composting of the digestate after centrifugation were studied by means of chemical analysis, FTIR and fluorescence spectroscopy as excitation–emission matrix (EEM). Chemical analysis highlighted the organic matter transformation occurring during the processes. A decrease of volatile solids and total organic carbon were observed in the digestate with respect to the fresh pig slurry as a consequence of the consumption of sugars, proteins, amino acids and fatty acids used by microorganisms as a C source. Water Extractable Organic Matter (WEOM) was obtained for all samples and fractionated into a hydrophilic and a hydrophobic fraction. The highest WEOM value was found in the pig slurry indicating a high content of labile organic C. The digestate centrifuged and the digestate composted showed lower hydrophilic and higher hydrophobic contents because of the decrease of labile C. Total phenolic content was lower in the digestate with respect to fresh pig slurry sample (36.7%) as a consequence of phenolic compounds degradation. The strong decrease of total reducing sugars in the digestate (76.6%) as compared to pig slurry confirmed that anaerobic process proceed mainly through consumption of sugars which represent a readily available energy source for microbial activity. FTIR spectra of pig slurry showed bands indicative of proteins and carbohydrates. A drop of aliphatic structures and a decrease of polysaccharides was observed after the anaerobic process along with the increase of the peak in the aromatic region. The composted substrate showed an increase of aromatic and a relative decrease of polysaccharides. EEM spectra provided tryptophan:fulvic-like fluorescence ratios which increased from fresh substrate to digestate because of the OM decompostion. Composted substrate presented the lowest ratio due to the humification process.  相似文献   
2.
An air-recirculated stripping involved two processes and did not require any pretreatment. First, stripping CO2 decreased the buffer capacity of the anaerobic digestate, thereby reducing the amount of lime used to achieve a high pH. Second, lime was added to increase pH and remove ammonia from the anaerobic digestate of pig manure. pH increased from 8.03 to 8.86 by stripping CO2 in the first process (gas-to-liquid ratio = 180) and further reached 12.38 in the second process (gas-to-liquid ratio = 300). During process optimization, the maximum ammonia removal efficiency reached 96.78% with a lime dose of 22.13 g. The value was close to 98.25%, which was the optimal result predicted by response surface methodology using the software Design-Expert 8.05b. All these results indicated that air-recirculated stripping coupled with absorption was a promising technology for the removal and recovery of nitrogen in the anaerobic digestate of pig manure.  相似文献   
3.
The importance of enhancing sludge dewaterability is increasing due to the considerable impact of excess sludge volume on disposal costs and on overall sludge management. This study presents an innovative approach to enhance dewaterability of anaerobic digestate(AD) harvested from a wastewater treatment plant. The combination of zero valent iron(ZVI, 0–4.0 g/g total solids(TS)) and hydrogen peroxide(HP, 0–90 mg/g TS) under pH 3.0 significantly enhanced the AD dewaterability. The largest enhancement of AD dewaterability was achieved at 18 mg HP/g TS and 2.0 g ZVI/g TS, with the capillary suction time reduced by up to 90%. Economic analysis suggested that the proposed HP and ZVI treatment has more economic benefits in comparison with the classical Fenton reaction process. The destruction of extracellular polymeric substances and cells as well as the decrease of particle size were supposed to contribute to the enhanced AD dewaterability by HP + ZVI conditioning.  相似文献   
4.
利用沼渣和硫酸亚铁对含铬土壤进行共处置,在初步优化处置工艺参数后对共处置的协同效应进行验证,并通过XPS分析和微生物群落分析揭示了协同效用机理.结果表明,沼渣和硫酸亚铁共处置含铬土壤可实现土壤Cr (VI)含量低至未检出(检出限0.2mg/kg),优于硫酸亚铁处置法.共处置还原速率高于沼渣单独处置.微生物群落结构分析表明共处置组别细菌群落丰度与多样性高于沼渣单独处置,共处置土壤铬还原菌的相对丰度明显提高.此外,共处置组别内铁还原菌和硫酸盐还原菌的相对丰度也显著提升.通过XPS分析,共处置后的土壤中存在Fe (Ⅱ)、亚硫酸盐和硫化物,结合微生物群落分析结果,证实了铁和硫催化微生物还原六价铬过程.本研究为低碳型高浓度Cr (VI)污染土壤的治理提供新的思路.  相似文献   
5.
针对小麦秸秆厌氧消化水解限速步骤,研究了酸、碱和污泥发酵消化液(以下简称消化液)预处理对小麦秸秆厌氧消化性能的影响。结果表明,酸和消化液预处理可以加速小麦秸秆水解酸化,在厌氧发酵第4天时产气中测得甲烷,早于对照和碱预处理。与对照相比,酸、消化液和碱预处理后小麦秸秆和污泥共消化体系的产气量可分别提高13.7%、12.0%和9.2%,产甲烷量可分别提高7.4%、9.5%和5.2%,但碱预处理会延滞厌氧消化产甲烷阶段。厚壁菌门(Firmicutes)是厌氧消化反应器中最主要的菌门,主要包括己酸菌属(Caproiciproducen s)、乙醇生孢产氢菌属(Hydrogenispora)、瘤胃梭菌属(Ruminiclostridium)、罗伊氏乳杆菌属(Lactobacillus)和Ruminiclostridium_1属等,其中己酸菌属和乙醇生孢产氢菌属可以作为小麦秸秆和污泥共消化的监测指标,在厌氧消化前期反应器中微生物主要为己酸菌属,而后期主要为乙醇生孢产氢菌属。  相似文献   
6.
• Liquid digestate humification was investigated under different oxidizing environment. • Tryptophan-like substances dominated the transformation of the liquid digestate DOM. • The humification sequence of the liquid digestate DOM was identified. • UV325 was first identified as a pre-humus intermediate during humification reaction. The formation of humic-like acids (HLAs) is an essential process for converting liquid digestate into organic soil amendments to enhance agricultural sustainability. The aim of this study was to investigate the impact of oxygen and/or MnO2 on the production of HLAs. Herein, abiotic humification performance of the digestate dissolved organic matter (DOM) is investigated with fluxes of air and N2 in the absence and presence of MnO2. Our results demonstrated that the fate of digestate DOM greatly depends on the oxidizing environment, the MnO2 enhanced nitrogen involved in the formation of HLAs. The synergistic effects of MnO2 and oxygen effectively improved the production of HLAs, and the corresponding component evolution was analyzed using spectroscopic evidence. The two-dimensional correlation spectroscopy results demonstrated that the reaction sequence of digestate DOM followed the order of protein-like substances, substances with an absorbance at 325 nm, substances with UV absorbance at 254 nm and HLAs. Additionally, excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) showed that tryptophan-like C3 was more prone to transformation than tyrosine-like C2 and was responsible for the humification process. The substance with an absorbance at 325 nm was a reaction intermediate in the transformation process of protein-like substances to HLAs. The above findings can be used to promote the production of liquid fertilizer associated with carbon sequestration as well as the sustainable development of biogas production.  相似文献   
7.
采用荧光光谱、红外光谱、平行因子(PARAFAC)分析及二维相关光谱(2D-COS)分析来解释Fe (III)与牛粪发酵DOM的络合异质性及机制.结果表明,PAFAFAC能够识别6个荧光组分,包括类蛋白(C2)、类富里酸(C1)、类腐殖酸(C4、C5)、类蛋白与类富里酸和类腐殖酸结合的荧光组分(C3、C6).2D-SYS-COS分析仅能识别类蛋白和类富里酸荧光物质,DOM中类蛋白荧光为主要的荧光组分.2D-COS分析表明,在334nm处的类富里酸荧光组分优先与Fe (III)离子发生络合作用,络合次序为334nm→306nm.DOM中能够优先与Fe (III)发生络合作用的为仲铵盐-NH2基团,各官能团组分与Fe (III)发生络合作用次序为2265→2771→1528→1310→1805→1479cm-1.双对数模型计算结果表明牛粪发酵沼液DOM能够与Fe (III)形成高化学稳定性的络合物,其络合常数在4.34~7.03之间,研究结果能够为沼液施用土壤金属离子的形态分布和迁移转化提供理论指导.  相似文献   
8.
沼液中悬浮物对乙醇发酵的影响及其絮凝处理的研究   总被引:1,自引:0,他引:1  
乙醇-沼气双发酵耦联工艺的应用有望实现乙醇工业工艺废水"零排放"的目标.本研究对该耦联工艺的回用配料水——中温沼液中的悬浮物对乙醇发酵的影响进行了考察,并对其去除方法进行了确定.结果表明,沼液中悬浮物的存在会促进酵母细胞的繁殖,提高发酵速率,但副产物甘油及小分子有机酸的量大幅上升,而主产物乙醇的生成量减少,悬浮物对乙醇合成的临界抑制浓度为0.35 g·L-1(干重).采用不同的絮凝剂及絮凝方式对沼液中的悬浮物进行去除,发现絮凝剂聚合氯化铝(PAC,300 mg·L-1)与阳离子聚丙烯酰胺(CPAM,2 mg·L-1)协同处理时效果最佳,对沼液浊度、色度的去除率分别为92.4%、23.7%,所得上清液的悬浮物粒径小于2μm,PAC、CPAM的残留量分别为0.82、0.03mg·L-1.絮凝处理后消除了悬浮物对乙醇合成的抑制作用,且絮凝处理后沼液回用的发酵性能略优于离心所得沼液回用的发酵水平,达到了预期的目的.  相似文献   
9.
为了提高能源微藻Chlorella vulgaris的固碳产油性能和进一步降低其培养过程培养成本,本研究在单因素结果的基础上,通过响应面法对其进行了优化;并在优化后的条件下,探讨了采用15% CO2联合沼液替代传统培养基BG-11培养Chlorella vulgaris的可行性.结果表明,通气速率、光照强度、温度过高或过低都不利于小球藻生长、固碳和产油.响应面优化后得出当通气速率为0.075 m3?m-3·min-1、温度为28.5 ℃、光照强度为4950 lx时,小球藻的固碳和产油效果最佳,其生物质产率、平均固碳速率和油脂产率分别为0.20 、0.367g·L-1·d-1和56.8 mg·L-1·d-1.利用50%沼液联合15% CO2培养Chlorella vulgaris时,其平均固碳速率、油脂产率分别为0.3304 g·L-1·d-1和42.81 mg·L-1·d-1,此时沼液中氨氮、总磷、COD的利用率分别能够达到55.48%、41.95%和81.63%,沼液可有效替代BG-11培养基,可大幅度降低培养成本,实现废水和CO2的资源化.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号