首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
综合类   1篇
基础理论   2篇
  2020年   2篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 125 毫秒
1
1.
以典型镉(Cd)、砷(As)和铅(Pb)复合污染农田为主要研究对象,在田块尺度上(纵向上受周边冶炼厂和污灌河流影响,横向上受道路交通影响)重点调查分析了农田土壤和小麦籽粒中Cd、As和Pb污染特征,并采用化学致癌物和化学非致癌物模型对小麦籽粒Cd、As和Pb含量进行了人体健康风险评价.结果表明,该农田土壤为中度污染水平,土壤Cd、As和Pb含量均有不同程度超标(GB 15618-2018),点位超标率分别为100%、 100%和36.7%;小麦籽粒中Cd和Pb含量超标率分别为76.7%和13.3%,As含量未超过食品安全国家标准(GB 2762-2017).在纵向上距冶炼厂和污灌河流不同距离土壤Cd、As和Pb含量无显著差异,但小麦籽粒中Cd和As含量差异显著,近组Cd和As含量比远组分别高14.9%和41.8%(P0.05).在横向上土壤和小麦籽粒Pb含量主要受道路交通影响,最近组土壤和籽粒Pb含量分别比最远组高78.9%和471%(P0.05).该典型污染农田中小麦籽粒Cd和As对成人和儿童均存在致癌风险(致癌风险值R_i1×10~(-4)),风险值CdAs,儿童成人,小麦籽粒Pb尚未产生健康风险.  相似文献   
2.
Stabilization is one of the best demonstrated available technologies for treating toxic pollutants in soils and has been used worldwide but is rarely used for treatment of contaminated sites in China despite many bench-scale studies. Here, a field-scale application of stabilization treatment in Shanghai, China was summarized to demonstrate the whole engineering process and the key technical issues regarding stabilization of contaminated soil. A site contaminated with arsenic (As) and polycyclic aromatic hydrocarbons (PAHs), formerly used as a lighting plant in Shanghai, was chosen as the demonstration site. Stabilizing measures were taken to treat the contaminated soil to reuse the site for residential purposes. The whole engineering remediation process consisted of phase I environmental site assessment (ESA) and phase II ESA, quantitative human health risk assessment, remediation alternatives evaluation, bench-scale testing, remedial design, engineering implementation, and post-remediation assessment. A third party conducted evaluation monitoring indicated desirable results were achieved via the stabilization treatment. In addition, some technical obstacles related to soil stabilization treatment were discussed, including soil quality evaluation, stabilization effectiveness validation, and soil reuse assessment.  相似文献   
3.
• Recent progress of As-contaminated soil remediation technologies is presented. • Phytoextraction and chemical immobilization are the most widely used methods. • Novel remediation technologies for As-contaminated soil are still urgently needed. • Methods for evaluating soil remediation efficiency are lacking. • Future research directions for As-contaminated soil remediation are proposed. Arsenic (As) is a top human carcinogen widely distributed in the environment. As-contaminated soil exists worldwide and poses a threat on human health through water/food consumption, inhalation, or skin contact. More than 200 million people are exposed to excessive As concentration through direct or indirect exposure to contaminated soil. Therefore, affordable and efficient technologies that control risks caused by excess As in soil must be developed. The presently available methods can be classified as chemical, physical, and biological. Combined utilization of multiple technologies is also common to improve remediation efficiency. This review presents the research progress on different remediation technologies for As-contaminated soil. For chemical methods, common soil washing or immobilization agents were summarized. Physical technologies were mainly discussed from the field scale. Phytoextraction, the most widely used technology for As-contaminated soil in China, was the main focus for bioremediation. Method development for evaluating soil remediation efficiency was also summarized. Further research directions were proposed based on literature analysis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号