首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   738篇
  免费   4篇
  国内免费   8篇
安全科学   20篇
废物处理   39篇
环保管理   78篇
综合类   128篇
基础理论   114篇
污染及防治   266篇
评价与监测   62篇
社会与环境   40篇
灾害及防治   3篇
  2023年   9篇
  2022年   23篇
  2021年   17篇
  2020年   13篇
  2019年   7篇
  2018年   20篇
  2017年   25篇
  2016年   30篇
  2015年   24篇
  2014年   46篇
  2013年   79篇
  2012年   53篇
  2011年   56篇
  2010年   36篇
  2009年   35篇
  2008年   56篇
  2007年   37篇
  2006年   36篇
  2005年   40篇
  2004年   21篇
  2003年   23篇
  2002年   13篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1982年   2篇
  1978年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有750条查询结果,搜索用时 31 毫秒
741.
Polycyclic aromatic hydrocarbon (PAH) levels were determined in tissues of wild mussels (Mytilus galloprovincialis) collected at 17 stations along the Cantabrian coast (N Spain), from Navia (Asturias) to Fuenterrabía (Basque Country), in order to assess the extent of the environmental impact caused by the Prestige oil spill (November 13, 2002). Six sampling campaigns were carried out in April, June and November in 2003 and 2004. The comparison of PAH data with those obtained earlier in 2000 showed a widespread pyrolytic and petrogenic contamination and allowed an estimation, for the first time, of the background pollution in the region and identification of the chronic hotspots. The spatial distribution found in the first samples after the oil spill revealed the eastern area as the most affected due to the continuous arrival of fuel slicks since early summer 2003. Several stations in this area showed increased total PAH concentrations of up to 15 times the pre-spill levels, which did not recover until April 2004, more than one year after the accident. Molecular parameters within the aliphatic and aromatic fractions were determined to assess the presence of Prestige oil in these samples.  相似文献   
742.
Forests were shown to play an important role in influencing atmospheric concentrations and transport of persistent organic pollutants (POPs) in the environment. World forests cover more than 4 billion hectares and contain up to 80% of the above ground organic carbon. Given the lipophilic nature of POPs, this suggests that forests can influence the environmental fate of POPs at a global scale. POP accumulation in forest canopies still presents points of concern given the complexity of these ecosystems. In particular, the role of ecological parameters such as LAI (leaf area index) and SLA (specific leaf area) and their dynamics during the growing season was not sufficiently investigated yet. This paper reviews, compares and interprets a unique case study in which air and leaf concentrations and deposition fluxes for selected polychlorinated biphenyls (PCBs) were measured in three different forest types exposed to the same air masses. In order to trace the air-leaf-soil path of these compounds, a dynamic model of POP accumulation into forest canopy was applied. The dynamics of the canopy biomass strongly affected the trend of leaf concentration with time. Growth dilution effect can prevent the more chlorinated compounds from reaching the partitioning equilibrium before litter fall, while the more volatile compounds can approach equilibrium in the range of few weeks. An amount of up to 60 ng of PCBs per square metre of ground surface was predicted to be stored in each of the selected forests at fully developed canopy. Dry gaseous deposition fluxes to forest canopy were estimated to reach a maximum value of about 0.5-1.5 ng m(-2) d(-1) during the spring period.  相似文献   
743.
The application of high resolution gas chromatography in combination with low resolution mass spectrometry with electron ionization and MS/MS detection (HRGC-MS/MS) is tested for its use in the analysis of PCDD/Fs in infant formulas. Development of the analytical method was based upon EPA directrices and international recommendations. Calibration linearity was tested and average relative response for any native and labelled compound over the five-point calibration range below 14% was found. The precision and accuracy of the proposed analytical procedure are also presented. Results obtained are in agreement with EPA criteria. The method is applied to the analysis of a number of initial and follow-on milk based infant formulas. In general, HRGC-MS/MS constitutes an interesting method for the analysis of dioxins in such matrices.  相似文献   
744.
The variability of species sensitivity distribution (SSD) due to contaminant bioavailability in soil was explored by using nickel as metal of concern. SSDs of toxicity test results of Avena sativa L. originating from different soils and expressed as total content and available (0.01 M CaCl2) extractable concentration were compared to SSDs for terrestrial plants derived from literature toxicity data. Also the 'free' nickel (Ni2+) concentration was calculated and compared. The results demonstrated that SSDs based on total nickel content highly depend on the experimental conditions set up for toxicity testing (i.e. selected soil and pH value) and thus on metal bioavailability in soil, resulting in an unacceptable uncertainty for ecological risk estimation. The use in SSDs of plant toxicity data expressed as 0.01 M CaCl2 extractable metal strongly reduced the uncertainty in the SSD curve and thus can improve the ERA procedure remarkably by taking bioavailability into account.  相似文献   
745.
Analyses of U.S. Environmental Protection Agency (EPA) certification data, California Air Resources Board surveillance testing data, and EPA research testing data indicated that EPA's MOBILE6.2 emission factor model substantially underestimates emissions of gaseous air toxics occurring during vehicle starts at cold temperatures for light-duty vehicles and trucks meeting EPA Tier 1 and later standards. An unofficial version of the MOBILE6.2 model was created to account for these underestimates. When this unofficial version of the model was used to project emissions into the future, emissions increased by almost 100% by calendar year 2030, and estimated modeled ambient air toxics concentrations increased by 6-84%, depending on the pollutant. To address these elevated emissions, EPA recently finalized standards requiring reductions of emissions when engines start at cold temperatures.  相似文献   
746.
Environmental Science and Pollution Research - Catalyst samples based on SiO2-supported TiO2 were prepared with the incorporation of Ag (metal), S (nonmetal), and ZnO@S (semiconductor and...  相似文献   
747.
Environmental Science and Pollution Research - A novel hybrid nanomaterial, nanoscale zero-valent iron (nZVI)-grafted imogolite nanotubes (Imo), was synthesized via a fast and straightforward...  相似文献   
748.
Environmental Science and Pollution Research - In this study, we evaluated indoor air quality to highlight the effects of environmental pollution in the field of cultural heritage. In particular,...  相似文献   
749.
750.

This review summarizes research data on the pharmaceutical drugs used to treat the novel SARS-CoV-2 virus, their characteristics, environmental impacts, and the advanced oxidation processes (AOP) applied to remove them. A literature survey was conducted using the electronic databases Science Direct, Scopus, Taylor & Francis, Google Scholar, PubMed, and Springer. This complete research includes and discusses relevant studies that involve the introduction, pharmaceutical drugs used in the SARS-CoV-2 pandemic: chemical characteristics and environmental impact, advanced oxidation process (AOP), future trends and discussion, and conclusions. The results show a full approach in the versatility of AOPs as a promising solution to minimize the environmental impact associated with these compounds by the fact that they offer different ways for hydroxyl radical production. Moreover, this article focuses on introducing the fundamentals of each AOP, the main parameters involved, and the concomitance with other sources and modifications over the years. Photocatalysis, sonochemical technologies, electro-oxidation, photolysis, Fenton reaction, ozone, and sulfate radical AOP have been used to mineralize SARS-CoV-2 pharmaceutical compounds, and the efficiencies are greater than 65%. According to the results, photocatalysis is the main technology currently applied to remove these pharmaceuticals. This process has garnered attention because solar energy can be directly utilized; however, low photocatalytic efficiencies and high costs in large-scale practical applications limit its use. Furthermore, pharmaceuticals in the environment are diverse and complex. Finally, the review also provides ideas for further research needs and major concerns.

Graphical abstract
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号