首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   8篇
  国内免费   2篇
安全科学   7篇
废物处理   42篇
环保管理   28篇
综合类   76篇
基础理论   61篇
污染及防治   119篇
评价与监测   30篇
社会与环境   17篇
  2023年   7篇
  2022年   19篇
  2021年   18篇
  2020年   11篇
  2019年   9篇
  2018年   28篇
  2017年   21篇
  2016年   29篇
  2015年   17篇
  2014年   25篇
  2013年   30篇
  2012年   20篇
  2011年   35篇
  2010年   23篇
  2009年   11篇
  2008年   8篇
  2007年   19篇
  2006年   7篇
  2005年   12篇
  2004年   5篇
  2003年   6篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1994年   3篇
排序方式: 共有380条查询结果,搜索用时 183 毫秒
71.
Composite indices are used to assess and prioritize mitigation and adaptation strategies for addressing the impacts of global environmental change. We evaluate different aggregation tools for creating these indices and their potential effects on mitigation and adaptation efforts. We assess the association of each aggregation tool with different types of trade-offs, risk strategies, and the resulting spatial and statistical distribution of their composite scores. Four aggregation tools are investigated (Weighted Linear Combination, WLC; Ordered Weighted Average, OWA; Data Envelopment Analysis, DEA; Compromise Programming, CP) using an example of vulnerability to flooding in the eastern United States. The choice of aggregation tool affects vulnerability outcomes, decision risk strategies, and the prioritization of vulnerability reduction strategies. DEA produces the highest vulnerability scores, representing a risk averse strategy associated with pessimistic outcomes. WLC implies a neutral and fixed risk strategy. CP produces a range of outcomes from neutral (equivalent to the WLC) to pessimistic, depending on its parameters. OWA offers the highest flexibility to adjust the levels of trade-off and risk strategy, producing a range of vulnerability outcomes, from optimistic to pessimistic. The units of analysis, when prioritized across the different aggregation tools, are more consistent for the top ranked units. However, the differences in rank become substantial as the selection threshold score decreases. To obtain better informed vulnerability reduction strategies, we recommend to (i) address how trade-off and decision risk are embedded in the aggregation tool chosen, and (ii) evaluate their effect in the prioritization of mitigation and adaptation strategies being considered.  相似文献   
72.
Intraspecific variation in sociality is thought to reflect a trade-off between current fitness benefits and costs that emerge from individuals' decision to join or leave groups. Since those benefits and costs may be influenced by ecological conditions, ecological variation remains a major, ultimate cause of intraspecific variation in sociality. Intraspecific comparisons of mammalian sociality across populations facing different environmental conditions have not provided a consistent relationship between ecological variation and group-living. Thus, we studied two populations of the communally rearing rodent Octodon degus to determine how co-variation between sociality and ecology supports alternative ecological causes of group living. In particular, we examined how variables linked to predation risk, thermal conditions, burrowing costs, and food availability predicted temporal and population variation in sociality. Our study revealed population and temporal variation in total group size and group composition that covaried with population and yearly differences in ecology. In particular, predation risk and burrowing costs are supported as drivers of this social variation in degus. Thermal differences, food quantity and quality were not significant predictors of social group size. In contrast to between populations, social variation within populations was largely uncoupled from ecological differences.  相似文献   
73.
Pathogen-driven declines in animal populations are increasingly regarded as a major conservation issue. The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction by devil facial tumor disease, a unique transmissible cancer. The disease is transmitted through direct transfer of tumor cells, which is possible because the genetic diversity of Tasmanian devils is low, particularly in the major histocompatibility complex genes of the immune system. The far northwest of Tasmania now holds the last remaining disease-free wild devil populations. The recent discovery of unique major histocompatibility complex genotypes in the northwestern region of Tasmania has raised the possibility that some animals may be resilient to the disease. We examined the differences in the epidemiology and population effects of devil facial tumor disease at 3 well-studied affected sites in eastern Tasmania and 1 in western Tasmania (West Pencil Pine). In contrast to the 3 eastern sites, there has been no rapid increase in disease prevalence or evidence of population decline at West Pencil Pine. Moreover, this is the only onsite at which the population age structure has remained unaltered 4 years after the first detection of disease. The most plausible explanations for the substantial differences in population effects and epidemiology of the disease between eastern and western sites are geographic differences in genotypes or phenotypes of devils and functional differences between tumor strains in the 2 regions. We suggest that conservation efforts focus on identifying whether either or both these explanations are correct and then, if resistance alleles exist, to attempt to spread the resistant alleles into affected populations. Such assisted selection has rarely been attempted for the management of wildlife diseases, but it may be widely applicable.  相似文献   
74.
Spatiotemporal distribution patterns in relation to feeding behavior of herbivorous gastropods have been studied extensively, but still knowledge about small-scale patterns is limited in relation to eutrophication. This experimental study aimed to describe the small-scale distribution of Littorina littorea in nutrient-enriched and nutrient-unenriched mesocosms in a merely atidal region and relate the distribution to food abundance and possible competing organisms, while checking simultaneously for feeding activities. The latter part was accomplished through the “gut fluorescence technique” GFT (which, to our knowledge, has not previously been used for benthic grazers) to estimate per capita grazing rates and the former part through monitoring of spatial heterogeneity of L. littorea and co-variation with sessile organisms (using semivariograms and cross-semivariograms, respectively). After 5 months of nutrient addition, the abundance and biomass of L. littorea had increased in enriched systems, which also had significantly higher total biomass of green algae. Gut pigment content was higher in L. littorea from enriched mesocosms, and gut depletion rate was higher in L. littorea from unenriched mesocosms. Spatial analysis showed that L. littorea exhibited generally random patterns (suggesting feeding activities) but sometimes (often in the morning) spatial patchiness (clumped distribution) in both enriched and unenriched conditions. There was mainly positive co-variation between L. littorea and biofilm, while different nutrient conditions exhibited contrasting co-variation between L. littorea and barnacles (positive co-variation in enriched and negative co-variation in unenriched mesocosms). The study offered insights into how feeding behavior and spatial distribution of a species may interact with community components differently under different nutrient regimes. The applied methodology can be useful for purposes of faster examination of grazing effects among different regions and also to compare grazing intensities and interactions between grazers and the benthic communities in disturbed (including pollution and nutrient enrichment) and non-disturbed systems, as well as in up-welling versus non-upwelling areas.  相似文献   
75.
The quality of climate models has largely been overlooked as a possible source of uncertainty that may affect the outcomes of species distribution models, especially in the tropics, where comparatively few climatic stations are available. We compared the geographical discrepancies and potential conservation implications of using two different climate models (Saga and Worldclim) in combination with the species modelling approach Maxent in Bolivia. We estimated ranges of selected bird and fern species biogeographically restricted to either humid montane forest of the northern Bolivian Andes or seasonal dry tropical forests (in the Andes and southern lowlands). Saga and Worldclim predicted roughly similar climate patterns of temperature that were significantly correlated. Precipitation layers of both climate models were also roughly similar, but showed important differences. Species ranges estimated with Worldclim and Saga likewise produced different results. Ranges of species endemic to humid montane forests estimated with Saga had higher AUC (Area under the curve) values than those estimated with Worldclim, which for example predicted the occurrence of humid montane forest bird species near Lake Titicaca, an area that is clearly unsuitable for these species. Likewise, Worldclim overpredicted the occurrence of fern and bird species in the lowlands of the Chapare region and well south of the Andean Elbow, where more seasonal biomes occur. By contrast, Saga predictions were coherent with the known distribution of humid montane forests in the northern Bolivian Andes. Estimated ranges of species endemic to seasonal dry tropical forests predicted with Saga and Worldclim were not statistically different in most cases. However, detailed comparisons revealed that Saga was able to distinguish fragments of seasonal dry tropical forests in rain-shadow valleys of the northern Bolivian Andes, whereas Worldclim was not. These differences highlight the neglected influence of climate layers on modelling results and the importance of using the most accurate climate data available when modelling species distributions.  相似文献   
76.
We investigated speciation, oxidative state changes, and long- and short-term molecular-level dynamics of organic S after 365 d of aerobic incubation with and without the addition of sugarcane residue using XANES spectroscopy. Soil samples were collected from the upper 15 cm of undisturbed grasslands since 1880, from undisturbed grasslands since 1931, and from cultivated fields since 1880 in the western United States. We found three distinct groups of organosulfur compounds in these grassland-derived soils: (i) strongly reduced (S to S) organic S that encompasses thiols, monosulfides, disulfides, polysulfides, and thiophenes; (ii) organic S in intermediate oxidation (S to S) states, which include sulfoxides and sulfonates; and (iii) strongly oxidized (S) organic S, which comprises ester-SO-S. The first two groups represent S directly linked to C and accounted for 80% of the total organic S detected by XANES from the undisturbed soils. Aerobic incubation without the addition of sugarcane residue led to a 21% decline in organanosulfur compounds directly linked to C and to up to an 82% increase inorganic S directly bonded to O. Among the C-bonded S compounds, low-valence thiols, sulfides, thiophenic S, and intermediate-valence sulfoxide S seem to be highly susceptible to microbial attack and may represent the most reactive components of organic S pool in these grassland soils. Sulfonate S exhibited a much lower short-term reactivity. The incorporation of sugarcane residue resulted in an increase in organosulfur compounds directly bonded to C at the early stage of incubation. However, similar to soils incubated without residue addition, the proportion of organic S directly linked to C continued to decline with increasing duration of aerobic incubation, whereas the proportion of organic S directly bonded to O showed a steady rise.  相似文献   
77.
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000–2000 μm, 250–1000 μm, 53–250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32–34%), and microaggregates (1–1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250–1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.  相似文献   
78.
Food and Environmental Virology - Norovirus is a major cause of foodborne-associated acute gastroenteritis (AGE) outbreaks worldwide. Usually, food products are contaminated either during...  相似文献   
79.

Artificial Light at Night (ALAN) is expanding worldwide, and the study of its influence remains limited mainly to documenting impacts, overlooking the variation in key characteristics of the artificial light such as its intensity. The potential dose–response of fitness-related traits to different light intensities has not been assessed in sandy beach organisms. Hence, this study explored dose-responses to ALAN by exposing the intertidal sandy beach isopod Tylos spinulosus to a range of light intensities at night: 0 (control), 20, 40, 60, 80 and 100 lx. We quantified the response of this species at the molecular (RNA:DNA ratios), physiological (absorption efficiency) and organismal (growth rate) levels. Linear and non-linear regressions were used to explore the relationship between light intensity and the isopod response. The regressions showed that increasing light intensity caused an overall?~?threefold decline in RNA:DNA ratios and a?~?threefold increase in absorption efficiency, with strong dose-dependent effects. For both response variables, non-linear regressions also identified likely thresholds at 80 lx (RNA:DNA) and 40 lx (absorption efficiency). By contrast, isopod growth rates were unrelated (unaltered) by the increase in light intensity at night. We suggest that ALAN is detrimental for the condition of the isopods, likely by reducing the activity and feeding of these nocturnal organisms, and that the isopods compensate this by absorbing nutrients more efficiently in order to maintain growth levels.

  相似文献   
80.
Abstract

Glyphosate is the main herbicide currently used in the world due to wide applicability and efficiency in controlling weeds in many crops. However, its overuse may lead to undesirable impacts on the environment and to human health in the long run. This present study aimed to optimize and validate solid phase extraction (SPE) using an anionic resin for the simultaneous and direct determination of glyphosate and aminomethylphosphonic acid (AMPA) in water samples using high-performance liquid chromatography combined with inductively coupled plasma with triple quadrupole mass spectrometer (HPLC-ICP-MS/MS). The results showed that recovery percentage and relative standard deviation were 103.9?±?7.9 and 99.40?±?9.9% for glyphosate and AMPA, respectively. The validation certified that the method was precise, accurate, linear, and selective, with a limit of quantification of 1.09 and 0.29?μg L?1 for glyphosate and AMPA, respectively. The optimized methodology reached the concentration factor of 250 times and was successfully applied to analyze water samples from hydroponic cultivation of the eucalyptus seedlings. The results showed that the exudation process occurs at glyphosate doses starting from 2?L ha?1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号