首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1839篇
  免费   39篇
  国内免费   16篇
安全科学   67篇
废物处理   98篇
环保管理   395篇
综合类   178篇
基础理论   528篇
环境理论   1篇
污染及防治   392篇
评价与监测   148篇
社会与环境   55篇
灾害及防治   32篇
  2023年   7篇
  2022年   19篇
  2021年   31篇
  2020年   18篇
  2019年   24篇
  2018年   37篇
  2017年   42篇
  2016年   58篇
  2015年   43篇
  2014年   48篇
  2013年   124篇
  2012年   105篇
  2011年   100篇
  2010年   76篇
  2009年   79篇
  2008年   92篇
  2007年   111篇
  2006年   103篇
  2005年   73篇
  2004年   70篇
  2003年   78篇
  2002年   52篇
  2001年   33篇
  2000年   35篇
  1999年   30篇
  1998年   29篇
  1997年   27篇
  1996年   28篇
  1995年   22篇
  1994年   17篇
  1993年   20篇
  1992年   19篇
  1991年   13篇
  1990年   17篇
  1989年   15篇
  1988年   16篇
  1987年   15篇
  1986年   16篇
  1985年   10篇
  1984年   16篇
  1983年   15篇
  1982年   13篇
  1981年   18篇
  1980年   7篇
  1979年   19篇
  1978年   11篇
  1977年   10篇
  1976年   5篇
  1971年   4篇
  1970年   5篇
排序方式: 共有1894条查询结果,搜索用时 15 毫秒
71.
A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000–2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement.  相似文献   
72.
Young, Charles A., Marisa I. Escobar‐Arias, Martha Fernandes, Brian Joyce, Michael Kiparsky, Jeffrey F. Mount, Vishal K. Mehta, David Purkey, Joshua H. Viers, and David Yates, 2009. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. Journal of the American Water Resources Association (JAWRA) 45(6):1409‐1423. Abstract: The rainfall‐runoff model presented in this study represents the hydrology of 15 major watersheds of the Sierra Nevada in California as the backbone of a planning tool for water resources analysis including climate change studies. Our model implementation documents potential changes in hydrologic metrics such as snowpack and the initiation of snowmelt at a finer resolution than previous studies, in accordance with the needs of watershed‐level planning decisions. Calibration was performed with a sequence of steps focusing sequentially on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. An assessment of the calibrated streamflows using goodness of fit statistics indicate that the model robustly represents major features of weekly average flows of the historical 1980‐2001 time series. Runs of the model for climate warming scenarios with fixed increases of 2°C, 4°C, and 6°C for the spatial domain were used to analyze changes in snow accumulation and runoff timing. The results indicated a reduction in snowmelt volume that was largest in the 1,750‐2,750 m elevation range. In addition, the runoff center of mass shifted to earlier dates and this shift was non‐uniformly distributed throughout the Sierra Nevada. Because the hydrologic model presented here is nested within a water resources planning system, future research can focus on the management and adaptation of the water resources system in the context of climate change.  相似文献   
73.
Gray, Stephen T., Jeffrey J. Lukas, and Connie A. Woodhouse, 2011. Millennial‐Length Records of Streamflow From Three Major Upper Colorado River Tributaries. Journal of the American Water Resources Association (JAWRA) 47(4):702‐712. DOI: 10.1111/j.1752‐1688.2011.00535.x Abstract: Drought, climate change, and shifting consumptive use are prompting a widespread reassessment of water availability in the Upper Colorado River basin. Here, we present millennial‐length records of water year (October‐September) streamflow for key Upper Colorado tributaries: the White, Yampa, and Little Snake Rivers. Based on tree rings, these records represent the first paleohydrological reconstructions from these subbasins to overlap with a series of Medieval droughts (∼ad 800 to 1300). The reconstructions show marked interannual variability imbedded in nonstationary behavior over decadal to multidecadal time scales. These reconstructions suggest that, even in a millennial context, gaged flows from a handful of years (e.g., 1977 and 2002) were extremely dry. However, droughts of much greater duration and magnitude than any in the instrumental record were regular features prior to 1900. Likewise these reconstructions point to the unusual wetness of the gage period, and the potential for recent observations to paint an overly optimistic picture of regional water supplies. The future of the Upper Colorado River will be determined by a combination of inherent hydroclimatic variability and a broad range of human‐induced changes. It is then essential that regional water managers, water users, and policy makers alike consider a broader range of hydroclimatic scenarios than is offered by the gage record alone.  相似文献   
74.
Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic—and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality (E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.  相似文献   
75.
Six monitoring stations were selected to characterize the variations in airborne concentrations of heavy metals in South Korea between 1999 and 2012. Three stations represented higher concentrations, and three represented lower concentrations. The heavy metals monitored at these stations include cadmium, chromium, copper, iron (Fe), lead, manganese (Mn), and nickel. During the study period, concentrations of heavy metals at many stations, including those around the Seoul metropolitan area, showed a decreasing trend. However, concentrations of Mn and Fe that are primarily of crustal origin increased at four of the six stations. Some stations were significantly affected by emissions from the local industrial complex (IC), and heavy metal concentrations at those stations were relatively high even in summer. Many heavy metal concentrations were higher in spring than in winter, but wintertime concentrations of Cr and Pb were higher at the stations representing lower concentrations due to the dominant influence of combustion emissions. At stations less affected by emissions from the IC, concentrations of Fe and Mn that are predominantly crustal in origin were higher in spring, when Asian dust (AD) events are most frequent. Although Mn concentrations were also high at stations within the steelmaking IC during AD periods, they were much higher during non-AD periods due to local emissions. Variations in heavy metal concentrations, which are heavily influenced by emissions from the IC, warrant individual analysis because their emission characteristics differ from those of typical cases.  相似文献   
76.
ABSTRACT

To test the possible use of composted food waste and wastewater sludge as biofilters to treat gas-phase volatile organic compounds (VOCs), batch experiments were conducted with an isolated strain that could degrade aromatic compounds under aerobic conditions. A benzene and trichloroethylene (TCE) mixture was used as the gas-phase pollutant in experiments with composted food waste, sludge, and soil. Under aerobic conditions, benzene was degraded as a primary substrate and TCE was degraded cometabolically, with water contents varying from 6 to 60% (volume of water added/volume of solid). Optimal water content for VOC removal was 12% for the soil, 36% for the composted food waste, and 48% for the sludge.

The extent of VOC sorption and biodegradation at the optimal water content was different for each material. With the same initial VOC concentration, more VOCs were removed by sorption onto the composted food waste and the sludge, while less VOCs were biodegraded in comparison with the results using soil. The reason the biodegradation in the soil was greater may be partly attributed to the fact that, due to less sorption, the aqueous-phase concentration of VOCs, which microorganisms could utilize as a carbon source or cometabolize, was higher. We also speculate that the distribution of microorganisms in each medium affects the rate of biodegradation. A large number of microorganisms were attached to the composted food waste and sludge. Mass transfer of VOCs and oxygen to these microorganisms, which appear to have been heterogeneously distributed in clusters, may have been limited, resulting in hindered biodegradation.  相似文献   
77.
Abstract

This paper demonstrates how wind tunnel modeling data that accurately describe plume characteristics near an unconventional emission source can be used to improve the near-field downwind plume profiles predicted by conventional air pollution dispersion models. The study considers a vertical, cylindrical-shaped, elevated bin similar to large product storage bins that can be found at many industrial plant sites. Two dispersion models are considered: the U.S. Environmental Protection Agency's ISC2(ST) model and the Ontario Ministry of the Environment and Energy's GAS model. The wind tunnel study showed that plume behavior was contrary to what was predicted using conventional dispersion models such as ISC2(ST) and GAS and default values of input parameters. The wind tunnel data were used to develop a protocol for correcting the dispersion models inputs, resulting in a substantial improvement in the accuracy of the dispersion estimates.  相似文献   
78.
Hospital wastes are infectious wastes generated in hospitals and need to be disposed in such a way that they do not spread disease. In this experiment, 5, 10, 15 and 20% cow manure (CM) were mixed with hospital wastes (HW), and mixed wastes were subjected to vermicomposting. In control treatment, only HW was used for vermicomposting. Results suggested that significantly (P ≤ 0.05) higher total nitrogen content was recorded in vermicomposts when 10% or more CM was added to HW. Higher mineralization rate (decrease in C/N ratio) and cellulase activity is probably responsible for rapid organic matter decomposition (loss of total organic carbon). Ergosterol content i.e., total fungal biomass and cellulolytic fungal population were almost constant initially, but increased in the latter stage of vermicomposting. All the vermicompost samples, prepared in this experiment, showed the absence of coliform bacteria. Therefore, it could be concluded that 10% CM addition with HW was the most economical to obtain best quality vermicompost in terms of nutrient content and microbial status.  相似文献   
79.
ABSTRACT

A speciated, hourly, and gridded air pollutants emission modeling system (SHEMS) was developed and applied in predicting hourly nitrogen dioxide (NO2) and ozone (O3) levels in the Seoul Metropolitan Area (SMA). The primary goal of the SHEMS was to produce a systemized emission inventory for air pollutants including ozone precursors for modeling air quality in urban areas.

The SHEMS is principally composed of three parts: (1) a pre-processor to process emission factors, activity levels, and spatial and temporal information using a geographical information system; (2) an emission model for each source type; and (3) a post-processor to produce report and input data for air quality models through database modeling. The source categories in SHEMS are point, area, mobile, natural, and other sources such as fugitive emissions. The emission database produced by SHEMS contains 22 inventoried compounds: sulfur dioxide, NO2, carbon monoxide, and 19 speciated volatile organic compounds. To validate SHEMS, the emission data were tested with the Urban Airshed Model to predict NO2 and O3 concentrations in the SMA during selected episode days in 1994. The results turned out to be reliable in describing temporal variation and spatial distribution of those pollutants.  相似文献   
80.
As part of an energy conservation program recently implemented by the Bell System, fans in many telephone equipment buildings now operate only when necessary to bring the temperature within allowable limits, rather than continuously. In the study reported here the effects of fan operation on indoor-outdoor dust relationships were monitored at 2 representative telephone offices. Automatic dichotomous samplers were used to collect fine and coarse aerosol particles inside telephone equipment buildings at Wichita, KS and Lubbock, TX. At both sites, outdoor samples (roof top) were collected at the same time as the indoor samples. During the tests the building fans were repetitively cycled between 2-week intervals of continuous fan operation and 2-week intervals of intermittent fan operation. The indoor dust concentrations typically increased when the fans were off. The results indicate that this increase was due to loss of constant filtration, but not due to loss of building pressurlzation (i.e., filtration of the recirculated air is largely responsible for the lower dust levels when the fans are running continuously). An expression is derived for the relative dust increase when the building fans are switched off. Among other factors, the relative increase is directly proportional to the efficiency of the building filters and to the rate at which air is recirculated through them. The present findings can be extended to similar buildings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号