首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
  国内免费   3篇
废物处理   7篇
环保管理   9篇
综合类   6篇
基础理论   20篇
污染及防治   29篇
评价与监测   10篇
社会与环境   1篇
灾害及防治   1篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   12篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1994年   1篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
71.
Kim YH  Ahn JY  Moon SH  Lee J 《Chemosphere》2005,60(10):1349-1355
Efficiencies of two lypolytic enzymes (fungal cutinase and yeast esterase) in malathion degradation were investigated. Surprisingly, degradation rate of malathion by fungal cutinase was very high, i.e. almost 60% of initial malathion (500 mg l(-1)) was decomposed within 0.5 h, and nearly 50% of the degraded malathion disappeared within initial 15 min. With the yeast esterase, despite the same concentration, more than 65% of malathion remained even after 2-day treatment. During enzymatic degradation of malathion, two malathion-derived compounds were detected, and time-course changes in composition were also monitored. In the degradation by both fungal cutinase and yeast esterase, two additional organic chemicals were produced from malathion: malathion monoacid (MMA) and malathion diacid (MDA) by ester hydrolysis. Final chemical composition after 2 d was significantly dependent on the enzyme used. Fungal cutinase produced MDA as a major degradation compound. However in the malathion degradation by yeast esterase, an isomer of MMA was produced in abundance in addition to MDA. Toxic effects of malathion and its final degradation products were investigated using various recombinant bioluminescent bacteria. As a result, the degradation products (including MMA) by esterase severely caused membrane damage and inhibition of protein synthesis in bacterial cells, while in the fungal cutinase processes, malathion was significantly degraded to non-toxic MDA after the extended period (2 days).  相似文献   
72.
Tailings, agricultural soils, vegetables and groundwater samples were collected from abandoned metal mines (Duckum, Dongil, Dongjung, Myoungbong and Songchun mines) in Korea. Total concentrations of arsenic (As) and heavy metals (Cd, Cu, Pb and Zn) were analyzed to investigate the contamination level. Several digestion methods (Toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), 0.1 N/1 N HCl) and sequential extraction analysis for mine tailings were conducted to examine the potential leachability of As and heavy metals from the tailings. The order of urgent remediation for the studied mines based on the risk assessment and remedial goals was suggested. The Songchun mine tailings were most severely contaminated by As and heavy metals. Total concentrations of As and Pb in the tailings were 38,600–58,700 mg/kg (av. 47,400 mg/kg) and 11,800–16,800 mg/kg (av. 14,600 mg/kg), respectively. Agricultural soils having high As concentrations were found at the all mines. Average concentrations of Cd in the vegetables exceeded the normal value at all mines areas, while As only at the Dongjung, Myoungbong, and Songchun mine area. One groundwater sample each from the Dongil and Myoungbong mines, and 4 groundwater samples from the Songchun mine had values above 10 μg/L of As concentration. The TCLP method revealed that only Pb in the Songchun tailings, 6.49 mg/L, exceeded the regulatory level (5 mg/L). Employing the 1-N HCl digestion method, the concentration of As in the Songchun mine tailings, 4,250 mg/kg, was up to 3,000 times higher than its Korean countermeasure standard. Results from the sequential extraction of As in the tailings showed that the easily releasable fraction in the Myoungbong and Songchun mine tailings was more than 30% and the residual fraction was less than 40%. Based on results showing the exposure health risk employing the hazard quotient and cancer risk of As, Cd and Zn, the Dongil mine needs the most urgent remedial action. The concentration reduction factor (CRF) of As in both soil and groundwater follows the order: Songchun>Dongjung>Dongil>Myoungbong>Duckum mine.  相似文献   
73.
74.
Environmental Geochemistry and Health - Batch adsorption, batch diffusion, and flow-through column experiments were conducted using groundwater and fractured rock collected in unsaturated zone to...  相似文献   
75.
Rio Grande, the southernmost Brazilian port and industrial center, is marked by mercury-polluted ground cover. This pollution varies spatially, with levels exceeding 1,000 μg kg−1 in 30% of the urban territory. The risk of Hg impact as a result of deliberate and involuntary geophagy is increased by restrained urban conditions in combination with the large proportion of the population living at low-income levels. Laboratory tests have demonstrated that ingestion of Hg-polluted soil by rats results in significant alterations in animal health such as stagnation in body weight increase, and significant mercury accumulation in the liver and kidney. The consumption of Hg-contaminated urban soil also provoked changes in hematological profiles of experimental animals by increasing the number of platelets. The present study indicates the potential for the local population of Rio Grande living in mercury-polluted districts, specifically young children, to experience health disturbances.  相似文献   
76.
Propolis is a natural resinous product collected by honeybees from certain plants. It has gained popularity as a food and alternative medicine. Poplar and Baccharis are well known as the source plants of European and Brazilian propolis, respectively. However, the propolis from Okinawa, Japan, contains some prenylflavonoids not seen in other regions such as Europe and Brazil, suggesting that the plant origin of Okinawan propolis is a particular plant that grows in Okinawa. To identify the plant origin of Okinawan propolis, we observed the behavior of honeybees as they collected material from plants and caulked it inside the hive. Honeybees scraped resinous material from the surface of plant fruits of Macaranga tanarius and brought it back to their hive to use it as propolis. We collected samples of the plant and propolis, and compared their constituents by high-performance liquid chromatography with a photo-diode array detector. We also compared their 1,1-diphenyl-2-picryl-hydrazyl radical scavenging activity. The chemical constituents and biological activity of the ethanol extracts of the plant did not differ from those of propolis. This indicates directly that the plant origin of Okinawan propolis is M. tanarius. S. K. and J. N. contributed equally to this work.  相似文献   
77.
Physical parameters of 12 co-compost cover materials were experimentally determined and predicted variations in airflow characteristics were evaluated under varying moisture contents. Predicted air-filled porosity showed high correlation with measured air-filled porosity, facilitating development of a reliable model of air-filled porosity that makes it possible to predict the effect of varying moisture content and compost bed height on air-filled porosity and permeability. Predicted air-filled porosity decreased with increasing moisture content and compost depth for all materials. Air-filled porosity of corn stalks, oat straw, soybean straw, leaves, alfalfa hay, wheat straw, silage, wood shavings and sawdust was in the range of 38-99%. Turkey litter, soil compost blend and beef manure showed air-filled porosity values less than 30% near saturation and the bottom of pile. In concert with the findings of other researchers, effective particle size of all materials increased with increasing moisture content from 20% to 80% of water holding capacity (WHC). It increased dramatically near saturation. In general, permeability increased with increasing air-filled porosity and decreasing bulk density, but the relationship between permeability and moisture content is complex. Permeability is dependent on the balance between particle size and air-filled porosity. If the influence of aggregated particle size on the permeability is significant, it will compensate for the effect of reduced air-filled porosity caused by compaction and moisture content. In this case, permeability will increase; in the reverse case, it will decrease. Permeability decreased for corn stalks, oat straw, silage, wood shavings, soybean straw, sawdust, turkey litter and wheat straw with increasing moisture content from 20% WHC to 50% WHC, regardless of the depth of the compost bed. But the permeability increased with increasing moisture level from 50% to 80% WHC at moderate to shallow simulated bed depths. The soil compost blend and leaves showed the permeability increasing when the moisture increased not only from 50% to 80% WHC but also from 20% to 50% WHC. Permeability of alfalfa hay and beef manure always decreased with increasing moisture levels and pile depth. In this study the maximum wet bulk density and mechanical strength decreased with increasing the moisture content. The method described for determining physical properties under varying moisture contents and compost bed depths will be very useful for designing and modeling airflow characteristics of a mortality composting process with a variety of materials.  相似文献   
78.
The effects of various factors including turbidity, pH, DOC, temperature, and solar radiation on the concentrations of total mercury (TM) and dissolved gaseous mercury (DGM) were investigated in an artificial reservoir in Korea. Episodic total mercury accumulation events occurred during the rainy season as turbidity increased, indicating that the TM concentration was not controlled by direct atmospheric deposition. The DGM concentration in surface water ranged from 3.6 to 160 pg/L, having a maximum in summer and minimum in winter. While in most previous studies DGM was controlled primarily by a photo-reduction process, DGM concentrations tracked the amount of solar radiation only in winter when the water temperature was fairly low in this study. During the other seasons microbial transformation seemed to play an important role in reducing Hg(II) to Hg(0). DGM increased as dissolved organic carbon (DOC) concentration increased (p-value < 0.01) while it increased with a decrease of pH (p-value < 0.01).  相似文献   
79.
Polybrominated diphenyl ethers (PBDEs), commonly used flame retardants, have been reported as potential endocrine disruptor and neurodevelopmental toxicants, thus giving rise to the public health concern. The goal of this study was to investigate the relationship between umbilical cord blood, maternal blood, and breast milk concentrations of PBDEs in South Korean. We assessed PBDE levels in paired samples of umbilical cord blood, maternal blood, and breast milk. The levels of seven PBDE congeners were measured in 21 paired samples collected from the Cheil Woman’s Hospital (Seoul, Korea) in 2008. We also measured thyroid hormones levels in maternal and cord blood to assess the association between PBDEs exposure and thyroid hormone levels. However, there was no correlation between serum thyroxin (T4) and total PBDEs concentrations. The total PBDEs concentrations in the umbilical cord blood, maternal blood, and breast milk were 10.7 ± 5.1 ng g−1 lipid, 7.7 ± 4.2 ng g−1 lipid, and 3.0 ± 1.8 ng g−1 lipid, respectively. The ranges of total PBDE concentrations observed were 2.28-30.94 ng g−1 lipid in umbilical cord blood, 1.8-17.66 ng g−1 lipid in maternal blood, and 1.08-8.66 ng g−1 lipid in breast milk. BDE-47 (45-73% of total PBDEs) was observed to be present dominantly in all samples, followed by BDE-153. A strong correlation was found for major BDE-congeners between breast milk and cord blood or maternal blood and cord blood samples. The measurement of PBDEs concentrations in maternal blood or breast milk may help to determine the concentration of PBDEs in infant.  相似文献   
80.
Lee KW  Raisuddin S  Hwang DS  Park HG  Dahms HU  Ahn IY  Lee JS 《Chemosphere》2008,72(9):1359-1365
Previous studies on the intertidal copepod Tigriopus japonicus have demonstrated that it is a suitable model species for the assessment of acute toxicities of marine pollutants. In order to standardize T. japonicus for use in environmental risk assessment involving whole life cycle exposure, we tested nine pollutants for their effects on growth and reproduction during a two-generation life cycle exposure test. Nauplii (F 0) were exposed to a range of concentrations of each chemical in a static renewal culture system. Broods of the second generation (F1) were subsequently exposed to the same concentrations for one full life cycle. Of the seven traits (nauplius phase, development time, survival, sex ratio, number of clutch, nauplii per clutch and fecundity), only the length of the nauplius phase and development time showed a greater sensitivity to chemical exposure. Between the two sensitive traits, the period of the nauplius phase was more sensitive than cohort generation time. Biocides significantly increased the maturation period of nauplii as well as copepodids in F 0 generation. In this study, it was demonstrated that T. japonicus could also be used in reproduction and life cycle tests and it provides an opportunity for testing the chronic and subchronic toxic effects of marine pollutants. Further validation and harmonization in a multi-centric study involving other laboratories of the region will strengthen its use as a supplement to existing model species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号