首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15796篇
  免费   154篇
  国内免费   744篇
安全科学   456篇
废物处理   678篇
环保管理   1678篇
综合类   4093篇
基础理论   3593篇
环境理论   6篇
污染及防治   4108篇
评价与监测   1143篇
社会与环境   801篇
灾害及防治   138篇
  2022年   186篇
  2021年   165篇
  2020年   113篇
  2019年   131篇
  2018年   243篇
  2017年   272篇
  2016年   368篇
  2015年   286篇
  2014年   517篇
  2013年   1164篇
  2012年   590篇
  2011年   693篇
  2010年   575篇
  2009年   629篇
  2008年   678篇
  2007年   676篇
  2006年   621篇
  2005年   565篇
  2004年   480篇
  2003年   512篇
  2002年   485篇
  2001年   640篇
  2000年   416篇
  1999年   318篇
  1998年   197篇
  1997年   205篇
  1996年   210篇
  1995年   225篇
  1994年   201篇
  1993年   155篇
  1992年   184篇
  1991年   185篇
  1990年   173篇
  1989年   148篇
  1988年   164篇
  1987年   97篇
  1986年   131篇
  1985年   128篇
  1984年   123篇
  1983年   114篇
  1982年   122篇
  1981年   121篇
  1980年   87篇
  1979年   99篇
  1978年   101篇
  1976年   92篇
  1974年   104篇
  1972年   87篇
  1967年   100篇
  1964年   92篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
81.
Nickel has an adverse effect on some aspects of protein metabolism of the freshwater fish, Cyprinus carpio. The main changes observed were: (a) Decrease in soluble, structural and total proteins, AlAT and AAT activities with an increase in the levels of free amino acids, protease and GDH activities and ammonia in the gill and kidney at 1, 2, 3, and 4 days of exposure to a lethal concentration, 40 mg litre(-1) of nickel; (b) Increase in soluble, structural and total proteins, free amino acids and the activities of protease, AlAT, AAT and GDH with a decrease in ammonia and urea in these organs at 1, 5, 10 and 15 days of exposure to sublethal concentration, 8 mg litre(-1); (c) The magnitude in these changes increased over time with both concentrations of the metal, and was more marked in gill than in kidney.  相似文献   
82.
Field studies of chemical changes in surface waters associated with rainfall and snowmelt events have provided evidence of episodic acidification of lakes and streams in Europe and North America. Modelling these chemical changes is particularly challenging because of the variability associated with hydrological transport and chemical transformation processes in catchments. This paper provides a review of mathematical models that have been applied to the problem of episodic acidification. Several empirical approaches, including regression models, mixing models and time series models, support a strong hydrological interpretation of episodic acidification. Regional application of several models has suggested that acidic episodes (in which the acid neutralizing capacity becomes negative) are relatively common in surface waters in several regions of the US that receive acid deposition. Results from physically based models have suggested a lack of understanding of hydrological flowpaths, hydraulic residence times and biogeochemical reactions, particularly those involving aluminum. The ability to better predict episodic chemical responses of surface waters is thus dependent upon elucidation of these and other physical and chemical processes.  相似文献   
83.
Episodic acidification is practically a ubiquitous process in streams and drainage lakes in Canada, Europe and the United States. Depressions of pH are often smaller in systems with low pre-episode pH levels. Studies on European surface waters have reported episodes most frequently with minimum pH levels below 4.5. In Canada and the United States, studies have also reported a number of systems that have had minimum pH levels below 4.5. In all areas, change in water flowpath during hydrological events is a major determinant of episode characteristics. Episodic acidification is also controlled by a combination of other natural and anthropogenic factors. Base cation decreases are an important contributor to episodes in circumneutral streams and lakes. Sulphate pulses are generally important contributors to episodic acidification in Europe and Canada. Nitrate pulses are generally more important to episodic acidification in the Northeast United States. Increases in organic acids contribute to episodes in some streams in all areas. The sea-salt effect is important in near-coastal streams and lakes. In Canada, Europe and the United States, acidic deposition has increased the severity (minimum pH reached) of episodes in some streams and lakes.  相似文献   
84.
Data are presented demonstrating how clearfelling has changed soil and stream water aluminium chemistry. For soil waters, a strong empirical relationship was observed between inorganic aluminium (Al(inorg)) and total inorganic anion (TIA) concentrations. Before felling, chloride and sulphate accounted for the largest proportion of the TIA concentration. After felling, in soils where nitrification was active, nitrate became increasingly important. Where this led to an increase in TIA, Al(inorg) concentrations increased. Over five years, nitrate concentrations have fallen, along with TIA, resulting in a sympathetic decline in Al(inorg). Streams draining clearfelled areas initially became more acid, although chloride and sulphate concentrations decreased. Stream water nitrate concentrations increased soon after felling and remained higher than controls for up to four years. While nitrate concentrations were high, Al(inorg) remained unchanged. Subsequently, as nitrate and TIA decreased, Al(inorg) also declined to concentrations below those in the control stream. Clearfelling upland forests will not necessarily result in immediate improvements in water quality, although long-term benefits may be seen before canopy-closure of the next crop.  相似文献   
85.
An introduction to critical loads   总被引:1,自引:0,他引:1  
The critical loads approach to emission controls of gaseous pollutants is a concept with a short but eventful history. Despite difficulties with definitions and agreed values, its acceptance within the UN-ECE Convention on Long Range Transboundary Air Pollution has provided the impetus for developing methods to put critical loads to a practical use-the revision of the UNECE emission protocols for sulphur and nitrogen. Methodologies first focus upon quantifying a pollutant threshold at which harmful effects occur on particular sensitive receptors (usually biological species). This threshold is known as the critical load for deposited pollutants, and as the critical level for gaseous pollutants acting on receptors. To calculate a critical load, biological effects are usually 'translated' to critical chemical values, e.g. harmful effects on fish 'translate' to alkalinity or aluminium concentrations in water; thus, critical load calculations may be based upon the chemistry of a system. Such calculations may be performed using simple, steady-state models, whilst the use of more complex, dynamic models provides an insight into the past and future trends. Maps of critical loads can be drawn using calculated values, and maps of pollutant deposition data will then show geographical areas where critical loads are exceeded. Spatial emission-deposition models can identify sources contributing to areas of excess loads and quantify necessary emission reductions. Optimization procedures applied to such models can derive abatement strategies related to economic costs and critical load effects. The critical load calculations may also be used to underpin the setting of target loads; these are pollutant loads, determined by political agreement, which take account of social, economic and political considerations.  相似文献   
86.
Environment, Development and Sustainability - Drying of fish at the Sagar Island (21.7269° N, 88.1096° E) is generally carried out in open sun on the seashore on plastic sheets or mat of...  相似文献   
87.
88.
89.
Carbon–silica materials with hierarchical pores consisting of micropores and mesopores were prepared by introducing nanocarbon microspheres derived from biomass sugar into silica gel channels in a hydrothermal environment.The physicochemical properties of the materials were characterized by nitrogen physical adsorption(BET),scanning electron microscopy(SEM),and thermogravimetric(TG),and the adsorption properties of various organic waste gases were investigated.The results showed that microporous carbon materials were introduced successfully into the silica gel channels,thus showing the high adsorption capacity of activated carbon in high humidity organic waste gas,and the high stability and mechanical strength of the silica gel.The dynamic adsorption behavior confirmed that the carbon–silica material had excellent adsorption capacity for different volatile organic compounds(VOCs).Furthermore,the carbon–silica material exhibited excellent desorption characteristics:adsorbed toluene was completely desorbed at 150℃,thereby showing superior regeneration characteristics.Both features were attributed to the formation of hierarchical pores.  相似文献   
90.
Ground-level ozone (O3) has become a critical pollutant impeding air quality improvement in Yangtze River Delta region of China. In this study, we present O3 pollution characteristics based on one-year online measurements during 2016 at an urban site in Nanjing, Jiangsu Province. Then, the sensitivity of O3 to its precursors during 2 O3 pollution episodes in August was analyzed using a box model based on observation (OBM). The relative incremental reactivity (RIR) of hydrocarbons was larger than other precursors, suggesting that hydrocarbons played the dominant role in O3 formation. The RIR values for NOX ranged from –0.41%/% to 0.19%/%. The O3 sensitivity was also analyzed based on relationship of simulated O3 production rates with reductions of VOC and NOX derived from scenario analyses. Simulation results illustrate that O3 formation was between VOCs-limited and transition regime. Xylenes and light alkenes were found to be key species in O3 formation according to RIR values, and their sources were determined using the Positive Matrix Factorization (PMF) model. Paints and solvent use was the largest contributor to xylenes (54%), while petrochemical industry was the most important source to propene (82%). Discussions on VOCs and NOX reduction schemes suggest that the 5% O3 control goal can be achieved by reducing VOCs by 20%. To obtain 10% O3 control goal, VOCs need to be reduced by 30% with VOCs/NOX larger than 3:1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号