首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12143篇
  免费   173篇
  国内免费   934篇
安全科学   243篇
废物处理   871篇
环保管理   1403篇
综合类   2485篇
基础理论   3503篇
污染及防治   2425篇
评价与监测   1148篇
社会与环境   1043篇
灾害及防治   129篇
  2024年   7篇
  2023年   52篇
  2022年   116篇
  2021年   131篇
  2020年   123篇
  2019年   103篇
  2018年   1568篇
  2017年   1515篇
  2016年   1308篇
  2015年   273篇
  2014年   164篇
  2013年   211篇
  2012年   655篇
  2011年   1527篇
  2010年   860篇
  2009年   765篇
  2008年   1032篇
  2007年   1418篇
  2006年   145篇
  2005年   113篇
  2004年   139篇
  2003年   154篇
  2002年   193篇
  2001年   111篇
  2000年   106篇
  1999年   81篇
  1998年   77篇
  1997年   65篇
  1996年   44篇
  1995年   39篇
  1994年   25篇
  1993年   25篇
  1992年   29篇
  1991年   8篇
  1990年   12篇
  1989年   16篇
  1988年   10篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   13篇
  1983年   9篇
  1960年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
建立了热脱附-毛细管气相色谱法测定空气中苯、甲苯、乙酸丁酯、乙苯、对/间二甲苯、邻二甲苯、苯乙烯和十一烷等挥发性有机物的检测方法。九种挥发性有机物在一定浓度范围内标准曲线线性良好,相关系数均在0.997~0.999之间。检出限在0.002~0.005 mg/m3(采样体积1.0 L计)。用该方法检测了企业产生的有机废气及厂区周边环境空气,实验结果表明该方法灵敏度高、操作简单、重现性好、准确可靠,能够满足对实际样品的分析要求。  相似文献   
72.
污泥龄对LSP & PNR污泥减量新工艺运行效能的影响   总被引:2,自引:1,他引:1  
通过研究分析污泥龄(SRT)对富磷污水除磷的LSP&PNR污泥减量新工艺运行效果的影响,结果发现,延长污泥龄有利于提高系统的厌氧释磷能力,但不影响其总的除磷率,同时磷的回收比例增大,当SRT=50 d时,磷回收率取得最大值70.4%;LSP&PNR系统污泥龄增加,还有利于污泥产率的降低。试验还发现,排富磷污水除磷的长污泥龄LSP&PNR系统的除磷效率与污泥产率之间不存在制约关系,即系统可以同时获得优异的污泥减量与生物除磷效果,当SRT=50 d时,每降解1 kg COD仅产生0.143 kg污泥,而除磷率达最高值928%;LSP&PNR系统中SRT、DO与SVI之间存在一定的相关性,在供氧充足(DO=0.8~1.5 mg/L)条件下,SRT增加,SVI越高,但对于SRT为50 d的LSP&PNR系统,稳定运行时没有污泥膨胀之虞。  相似文献   
73.
Jin Y  Veiga MC  Kennes C 《Chemosphere》2007,68(6):1186-1193
Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate both of these groups of compounds. Since the co-treatment of inorganic sulfur compounds and VOCs in biotrickling filters is a relatively unexplored area, the simultaneous biotreatment of H2S and methanol as the model VOC was investigated. The results showed that, after adaptation, the elimination capacity of methanol could reach around 236 g m(-3) h(-1) with the simultaneous complete removal (100%) of 12 ppm H2S when the empty bed residence time is 24 s. The pH of the system was around 2. Methanol removal was hardly affected by the presence of hydrogen sulfide, despite the low pH. Conversely, the presence of the VOC in the waste gas reduced the efficiency of H2S biodegradation. The maximal methanol removal decreased somewhat when increasing the gas flow rate. This is the first report on the degradation of methanol at such low pH in a biotrickling filter and on the co-treatment of H2S and VOCs under such conditions.  相似文献   
74.
Background, Aim and Scope Numerous herbicides and xenobiotic organic pollutants are detoxified in plants to glutathione conjugates. Following this enzyme catalyzed reaction, xenobiotic GS-conjugates are thought to be compartmentalized in the vacuole of plant cells. In the present study, evidence is presented for long range transport of these conjugates in plants, rather than storage in the vacuole. To our knowledge this is the first report about the unidirectional long range transport of xenobiotic conjugates in plants and the exudation of a glutathione conjugate from the root tips. This could mean that plants possess an excretion system for unwanted compounds which give them similar advantages as animals. Materials and Methods: Barley plants (Hordeum vulgare L. cv. Cherie) were grown in Petri dishes soaked with tap water in the greenhouse. - Fluorescence Microscopy. Monobromo- and Monochlorobimane, two model xenobiotics that are conjugated rapidly in plant cells with glutathione, hereby forming fluorescent metabolites, were used as markers for our experiments. Their transport in the root could be followed sensitively with very good temporal and spatial resolution. Roots of barley seedlings were cut under water and the end at which xenobiotics were applied was fixed in an aperture with a thin latex foil and transferred into a drop of water on a cover slide. The cover slide was fixed in a measuring chamber on the stage of an inverse fluorescence microscope (Zeiss Axiovert 100). - Spectrometric enzyme assay. Glutathione S-transferase (GST) activity was determined in the protein extracts following established methods. Aliquots of the enzyme extract were incubated with 1-chloro-2,4-dinitrobenzene (CDNB), or monochlorobimane. Controls lacking enzyme or GSH were measured. - Pitman chamber experiments. Ten days old barley plants or detached roots were inserted into special incubation chambers, either complete with tips or decapitated, as well as 10 days old barley plants without root tips. Compartment A was filled with a transport medium and GSH conjugate or L-cysteine conjugate. Compartments B and C contained sugar free media. Samples were taken from the root tip containing compartment C and the amount of conjugate transported was determined spectro-photometrically. Results: The transport in roots is unidirectional towards the root tips and leads to exsudation of the conjugates at rates between 20 and 200 nmol min-1. The microscopic studies have been complemented by transport studies in small root chambers and spectroscopic quantification of dinitrobenzene-conjugates. The latter experiments confirm the microscopic studies. Furthermore it was shown that glutathione conjugates are transported at higher rates than cysteine conjugates, despite of their higher molecular weights. This observation points to the existence of glutathione specific carriers and a specific role of glutathione in the root. Discussion: It can be assumed that long distance transport of glutathione conjugates within the plant proceeds like GSH or amino acid transport in both, phloem and xylem. The high velocity of this translocation of the GS-X is indicative of an active transport. For free glutathione, a rapid transport-system is essential because an accumulation of GSH in the root tip inhibits further uptake of sulfur. Taking into account that all described MRP transporters and also the GSH plasmalemma ATPases have side activities for glutathione derivatives and conjugates, co-transport of these xenobiotic metabolites seems credible. - On the other hand, when GS-B was applied to the root tips from the outside, no significant uptake was observed. Thus it can be concluded that only those conjugates can be transported in the xylem which are formed inside the root apex. Having left the root once, there seems to be no return into the root vessels, probably because of a lack of inward directed transporters. Conclusions: Plants seem to possess the capability to store glutathione conjugates in the vacuole, but under certain conditions, these metabolites might also undergo long range transport, predominantly into the plant root. The transport seems dependent on specific carriers and is unidirectional, this means that xenobiotic conjugates from the rhizosphere are not taken up again. The exudation of xenobiotic metabolites offers an opportunity to avoid the accumulation of such compounds in the plant. Recommendations and Perspectives: The role of glutathione and glutathione related metabolites in the rhizosphere has not been studied in any detail, and only scattered data are available on interactions between the plant root and rhizosphere bacteria that encounter such conjugates. The final fate of these compounds in the root zone has also not been addressed so far. It will be interesting to study effects of the exuded metabolites on the biology of rhizosphere bacteria and fungi.  相似文献   
75.
电磁环境对采后芒果的生理影响   总被引:2,自引:0,他引:2  
系统研究了采后芒果在静电场,磁场,放电生成气环境下的生理变化。测试了呼吸速率,果体与果皮电解质渗出率,商品果率与病情指数等生理指标。研究结果表明,采后芒果在呼吸速率达到高峰之前电磁环境对其均有明显的作用,而在呼吸高峰之后,无明显影响。在我们设置的电磁环境参数中有几项显示保鲜作用。表1参6  相似文献   
76.
Gasification experiments for sawdust were conducted using a fixed bed reactor at 900 °C by varying the secondary oxidant injection ratio to determine the optimal conditions for tar removal along with the enhancement of gasification efficiency. Secondary oxidant was injected as an oxidant at the top zone of the gasifier in varying ratios of 10–30% of the total amount of oxidant. This method was based on the primary method of tar removal and gasification efficiency improvement by thermal cracking of tar. Various gasification performance parameters were evaluated and tar content was estimated by measuring the fluctuation of weight of the activated carbon filter. The results showed that the concentration of tar in the producer gas decreased by injecting the secondary oxidant, even though syngas yield decreased. The recycling potential of the char produced in the gasification experiments was also assessed with the purpose of utilizing char as an adsorbent by determining its surface area and pore volume. The results demonstrated that the char produced from the gasification experiment had similar quality to that of the activated carbon used in this experiment.  相似文献   
77.
Natural aggregates (NA) are crushed and processed in crushing plants after the extraction stage in quarries. In the present study, the aggregates are divided into three scenarios, depending on the production methods. The first scenario considers the production of NA, the second scenario deals with the production of recycled aggregates (RA) with respect to construction and demolition waste, and the third scenario, which is a hybrid scenario, handles the combination of NA and RA by assuming a 50% mixing percentage. In this research, we assess the environmental impacts on the production of aggregates via each scenario, using life cycle assessment; in addition, energy consumption and CO2 emissions are considered as the environmental variables. We conclude that Iran’s current policy with an annual energy consumption of 1.48 million tons of oil equivalent (toe) can have a footprint of 2.88 million tons of CO2 eq emissions per year (the first scenario). Achieving 30 and 36% reduction in annual energy consumption and CO2 emissions, respectively, by the third scenario compared to the first scenario indicates the destructive effect of the first scenario from the environmental outlook.  相似文献   
78.
The catalytic upgrading pyrolysis of pine sawdust was performed at 500 °C with various metal oxides to improve the quality of the bio-oil. The aim of this study was to investigate the potential of the metal oxides instead of traditional zeolites for catalytic upgrading pyrolysis with the analysis of Gas Chromatograph/Mass Spectrometer. In this study, the used catalysts were Calcium-oxide, Magnesium oxide, Titanium dioxide, and Zeolite (Si/Al?=?80). The influence of catalysts on products yields and compositions were investigated. Most metal oxides can enhance the bio-gas with the bio-oil yields decreased. The metal oxides led to a decrease of Acids, Aldehydes, Ketones and an increase of Furfural, Cresols, Catechols in Furans and Phenolics. Among the catalysts, the MgO catalysts was the most effective to convert the high molecular into lights ones (6.65% Cresols) with yield of 20.48% for Furfural. The deoxygenation reaction in bio-oil was suggested to convert oxygenated compounds into the low molecular weight of the materials (6.39% Guaiacols). Thus, the used metal oxides can improve the quality of bio-oil by decreasing undesirable compounds as well as increasing the desirable compounds with low oxygen contents via deoxygenation reaction.  相似文献   
79.
Surface treated macro and nanoparticle TiO2 samples have been prepared, characterised and their efficiency as UV blockers evaluated in clear coatings and paints. The particle size of the ‘base’ TiO2 has been optimised to block UV radiation and the surface treatment developed to deactivate the photocatalytic activity of the surface of the TiO2 particles. The resultant UV blockers have been evaluated in both solvent and water-based clear coatings. Nanoparticle TiO2 has been prepared from ‘seed’ and the particle size was controlled by calcination. It was found that the choice of particle size is a compromise between UVA absorption, UVB absorption, visible transmission and photoactivity. It has been demonstrated that TiO2 with a crystallite size of 25 nm yields a product with the optimum properties. A range of dispersants was successfully used to disperse and mill the TiO2. Both organic and inorganic dispersants were used; 2-amino-2-methyl-1-propanol and 1-amino-2-propanol (MIPA) and P2O5 and Na2SiO3 respectively. The surface of the nano-TiO2 was coated with mixed oxides of silicon, aluminium, zirconium and phosphorous. Addition of the resultant coated nano-rutiles to an Isocyanate Acrylic clear coating prolonged the lifetime of that coating compared to the blank. Generally, a surface treatment based on SiO2, Al2O3 and P2O5 was more successful than one based on ZrO2, Al2O3 and P2O5. Higher addition levels of the surface treatment were beneficial for protecting the polymeric coating. The UV blocker products were also evaluated in a water-based acrylic, first a water-based dispersion of the UV blocker was prepared before addition to the acrylic. The dispersions and resultant acrylic thin films were evaluated using UV/Vis spectroscopy and durability assessed. The ratio of absorbance at 300:500 nm for the water-based dispersion was shown to be a good predictor of both the transparency of the resultant acrylic thin film and the durability of that film, in terms of weight loss. Macro grade titanium dioxide pigments were also prepared and coated with treatments of silica, alumina and siloxane and their photo-stabilising activity in alkyd paint film assessed and found to be directly related to the electron–hole pair mobility and trapping as determined by micro-wave spectroscopy.  相似文献   
80.
The objective of this work was to improve the impact and thermal properties of polylactic acid (PLA)-based biocomposite by appropriate application of cellulosic fiber and a bioelastomer. Biocomposites formulations with fiber contents of up to 20% in combination with a bioelastomer were extrusion-compounded in a twin-screw extruder followed by molding in an injection molding system. Fibers used in the formulations included three types of cellulosic fiber; namely, raw fiber from oat hull biomass (RF), hydrolysis byproduct (ATF) which was the solid fraction obtained from an acid-catalyzed hydrolysis of RF, and delignified fibers (AD30, AD65, AD100) which were the products of delignification of ATF. Formulated biocomposites were characterized for thermal (glass transition and melting temperatures, and enthalpy of melting) and physico-mechanical (tensile and bending strengths, stiffness, impact energy, and water absorption) properties. Among all types of biofibers, RF resulted in poor properties in the biocomposites due to the high hemicellulose content in the structure. On the other hand, the ratio of lignin to cellulose (in the absence of hemicellulose) in the modified fibers did not significantly affect the physico-mechanical and thermal properties of the biocomposites. The elastomer applied in the formulations improved the impact energy, thermal properties, and elongation at break of the composites. However, it adversely affected the strength and water resistance of biocomposites, especially in the presence of hemicellulose. The results indicated that, depending on the application, a wide range of PLA green composites with different physico-mechanical properties can be achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号