首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   6篇
  国内免费   14篇
安全科学   7篇
废物处理   1篇
环保管理   6篇
综合类   41篇
基础理论   12篇
污染及防治   4篇
评价与监测   2篇
社会与环境   4篇
灾害及防治   1篇
  2024年   2篇
  2023年   8篇
  2022年   5篇
  2021年   4篇
  2020年   3篇
  2019年   8篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
土壤—植物系统是环境的一个重要组成成份,是人类赖以生存的环境要素之一。随着现代工业的发展,各种工业污染物由不同渠道和方式进入土壤—植物系统,使这一系统的环境质量发生了变化;一般情况下污染物进入土壤后不能很快的降解和淋失,而以多种形式滞留在土壤中,其残留部分可通过生  相似文献   
2.
<正>据王雪峰描述,把石墨烯基光催化膜铺放在水里,只要有可见光,他就可以帮助分解水中的有机物质,让水体恢复自净能力。环境问题是全社会关注的焦点,也是全面建成小康社会能否得到人民认可的一个关键。当下,我们应用最先进的石墨烯光催化膜技术,在治理黑臭水体、修复水生态方面取得重要进展。上海暖墨节能科技有限公司董事总经理王  相似文献   
3.
为识别呼伦湖水体中氟化物的演变趋势,揭示呼伦湖水体氟化物浓度畸高的原因,于2015—2020年对呼伦湖入湖河流、湖周地下水、湖泊水体中氟化物(以F-计)浓度进行了详细调查,并结合2005—2014年历史数据分析呼伦湖水体中氟化物浓度的影响因素.结果表明:2018—2019年,呼伦湖全湖水体氟化物浓度平均值在2.27~2.42 mg/L之间,年均值为2.36 mg/L,4个季节平均值之间无显著差异,但空间分布差异显著,在春季、夏季和秋季均表现为四周低、中间高的分布趋势,冬季则相反.3条主要入湖河流克鲁伦河、乌尔逊河和呼伦沟河水体中氟化物浓度显著低于湖体,分别为(1.14±0.36)(0.84±0.14)和(0.33±0.08)mg/L,氟化物入湖通量分别为236.41、396.31和301.29 t/a,地下水和入湖河流输入是呼伦湖水体氟化物的主要来源.呼伦湖水体中氟化物浓度主要在特殊气候地理条件引起的高自然本底环境下,受pH、湖体蓄水量和冰封作用的共同影响.研究显示,入湖河流、地下水等输入的氟化物在强蒸发作用下富集浓缩且缺少氟化物出湖途径是造成呼伦湖水体氟化物浓度畸高的根本原因.   相似文献   
4.
<正> 高磁分离是近几年发展起来的新技术,用于水处理很有发展前途,目前多数应用在钢铁工业废水的处理,其它方面的给水与废水处理的研究与应用也在进行。我们用这项技术对重金属离子废水进行处理试验,取得了一定效果。一、处理方法及其特点高磁分离是一种物理处理方法,不能直接分离水中的离子态重金属,必须籍助化学方法使重金属离子沉淀下来,然后用高磁分离去除。我们在试验中采取了以下几种化学沉淀方法: (一)投加磁种的化学沉淀法重金属的氢氧化物沉淀、硫化物沉淀、碳酸盐等等的沉淀都是非磁性的,不能直接用高磁分离去  相似文献   
5.
KOH活化小麦秸秆生物炭对废水中四环素的高效去除   总被引:1,自引:0,他引:1  
活化是提高生物炭吸附性能的重要手段.以小麦秸秆为研究对象,KOH为活化剂,制备KOH活化生物炭(K-BC),同时制备原状生物炭(BC)作为对照.对生物炭进行比表面积和孔径、元素分析、XPS、FTIR、Raman、XRD和pHpzc等表征,考察KOH活化对生物炭理化性质的影响,并探究生物炭对水体中四环素的吸附性能和机制.结果表明,KOH活化之后生物炭的比表面积和孔体积可达996.4 m2·g-1和0.45 cm3·g-1.KOH活化会制造更多的碳结构缺陷,影响生物炭的官能团和表面电性.拟二级动力学和Langmuir模型可以较好地拟合生物炭吸附四环素的过程.环境温度升高能提高生物炭对四环素的吸附量.K-BC吸附四环素是自发、吸热和无序度增加的过程.K-BC对四环素的最大吸附量理论可达到491.19 mg·g-1(实验温度为45℃).结合吸附后生物炭的Raman、FTIR和XPS表征,发现孔隙填充和π-π作用是K-BC吸附四环素的主要机制,氢键和络合作用也发挥重要作用.此外,K-BC还具有良好的循环使用性能.综上所述,KOH活化小麦秸秆生物炭是有效和可行的,可用于废水中四环素的去除.  相似文献   
6.
在呼伦贝尔市境内雅鲁河流域设置12个点位采集大型底栖动物进行调查研究并对水质状况进行生物学评价。共采集到底栖动物24种,隶属于8目22科,其中水生昆虫19种,占总数79.2%,各点位种类不丰富。各点位优势种不同,但基本都以对水质敏感类群和中等耐污类群为主。各点位密度和生物量差异较大,底栖动物平均密度为89~493ind/m2,平均生物量为0.42~11.69g/m2。调查区域大型底栖动物以集食者和捕食者种类较多,分别为6种;各功能摄食类群分布受空间资源位的限制。Shannon-Wiener多样性指数评价结果为上游点位水质为轻-中污染型,下游点位水质为中-重污染型,BI指数评价结果显示除南大河水质为中度污染外,其余点位水质均为清洁。  相似文献   
7.
本文采用全自动固相萃取-气相色谱-串联质谱(GC-MS/MS)分析水质中9种N-亚硝胺类化合物.水样以10 mL·min~(-1)速度通过Cleanert NDMA-SPE(1000 mg/6 mL)进行富集,用20%的甲醇水溶液淋洗去除杂质和破坏柱填料表层的水膜,再用二氯甲烷溶剂洗脱,收集的固相萃取洗脱液浓缩后进行GC-MS/MS分析.采用Rtx-Wax色谱柱分离,MRM模式下进行检测,内标法定量.实验结果表明,9种目标物在1.00—100μg·L~(-1)范围内线性关系良好,相关系数大于0.999;方法检出限为0.1—0.5 ng·L~(-1).在低、中、高的加标水平下,9种N-亚硝胺类化合物的回收率分别为71%—94%、74%—95%和75%—103%,相对偏差分别为6.7%—15.8%、5.1%—12.3%和4.5%—9.6%.  相似文献   
8.
综合水质标识指数法在海拉尔河水质评价中的应用研究   总被引:1,自引:0,他引:1  
水质评价是水环境治理的重要基础性工作.水质综合标识指数法涵盖了综合水质类别、定量污染程度、水环境功能区达标等信息,是将定性与定量评价相结合,能够对综合水质做出合理的解释,不会因个别指标导致过分评价.研究将海拉尔河划分为3个控制单元,根据2003年-2012年水质监测数据,采用综合水质标识指数法识别各控制单元主要污染因子,并分析海拉尔河水质时空变化规律.研究结果表明海拉尔河从上游至下游综合水质标识指数逐渐升高,上游水质较好,中游和下游主要污染指标为高锰酸盐指数和COD.2003年-2012年,海拉尔河高锰酸钾指数、BOD5、氨氮和总磷的污染减轻,化学需氧量污染略微减轻但仍存在超标风险.  相似文献   
9.
呼伦贝尔市在生态示范区创建中,确立了稳固环境与资源基础、保护北疆生态屏障的战略目标;统一了预防为先、保护为主、建设为辅的生态保护思想;确定了在经济结构调整和生产方式的转变中实现环境与经济“双赢”的创建道路;把生态示范区建设的目标任务具体为工程、项目,保证了创建工作的顺利进行,走出了一条在我国北部边疆少数民族地区开展生态示范区建设的道路。  相似文献   
10.
利用微生物光电化学池(MPEC)去除污染物是一种经济高效环保的方法.本实验在制备获得聚苯胺/二氧化钛纳米管阵列(PANI/TiO_2-NTs)复合光电极的基础上,构建了由PANI/TiO_2-NTs光阳极和生物阴极组成的MPEC系统,并对其去除硝酸盐氮(NO~-_3-N)的性能进行研究.结果表明,PANI负载时间为80 s时,PANI/TiO_2-NTs电极光电性能最佳,相比于TiO_2-NTs电极光电流密度增大约一倍,PANI的修饰有效提高了光能利用率.构建的MPEC系统能在无外加电压的条件下利用光能驱动实现自养反硝化脱氮,NO~-_3-N的生物降解符合准一级反应动力学方程.光响应电流密度越大,系统反硝化脱氮性能越好,NO~-_3-N初始浓度为25 mg·L~(-1)时,当光响应电流密度从0.17 mA·cm~(-2)增加至0.67 mA·cm~(-2),平均反硝化速率从0.83 mg·(L·h)~(-1)增大到2.83 mg·(L·h)~(-1).对生物阴极微生物膜进行了高通量测序,发现Pseudomonas所占比例最大(27.37%)为优势菌属.分析认为PANI/TiO_2-NTs光阳极产生的光生电子通过外电路传递到阴极,Pseudomonas、Alishewanella和Flavobacterium等具有自养反硝化能力和电化学活性的微生物可直接利用电极上的电子作为唯一的电子供体进行自养反硝化脱氮.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号