首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
安全科学   6篇
废物处理   1篇
环保管理   13篇
综合类   6篇
基础理论   9篇
污染及防治   20篇
评价与监测   5篇
社会与环境   4篇
灾害及防治   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2001年   5篇
  1996年   1篇
  1992年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   2篇
  1977年   1篇
  1973年   1篇
排序方式: 共有65条查询结果,搜索用时 421 毫秒
41.
Government intervention schemes in the form of policy instruments and financial incentives or rebates can have a major influence on the adoption of technologies by residential consumers to reduce their natural resource consumption and greenhouse gas emissions. However, the pattern and rate of consumer uptake of voluntary schemes are not always well-understood or easily taken into account in future scenarios analyses. This paper presents an innovative extension of the Bass diffusion model that has been integrated with multi-criteria analysis to enable explicit consideration and balancing of the impacts of technology cost, financial benefits, demographic suitability and household income on the likelihood of adoption. This ‘Intervention Options’ model is formulated into a constrained integer programming problem to allow optimisation of the size and timing of government rebates to maximise adoption rate and, ultimately, environmental benefits. The model’s capability is demonstrated using an Australian case study of 25,000 households, and historical information on the uptake of solar hot water and solar photovoltaic panels in Brisbane, Queensland. Case study results reveal new insights and important context-relevant trends that could assist policy makers to substantially improve the effectiveness of intervention schemes to achieve environmental goals within desired budgets.  相似文献   
42.
A combustion-driven flow reactor was used to examine the formation of chlorinated and non-chlorinated species from the thermal oxidation of chlorobenzene under post-flame conditions. Temperature varied from 725 to 1000 K, while the equivalence ratio was held constant at 0.5. Significant quantities of chlorinated intermediates, vinyl chloride and chlorophenol, were measured. A dominant C-Cl scission destruction pathway seen in pyrolytic studies was not observed. Instead, hydrogen-abstraction reactions prevailed, leading to high concentrations of chlorinated byproducts. The thermal oxidation of benzene was also investigated for comparison. Chemical kinetic modeling of benzene and chlorobenzene was used to explore reaction pathways. Two chlorobenzene models were developed to test the hypothesis that chlorobenzene oxidation follows a CO-expulsion breakdown pathway similar to that of benzene. For the temperatures and equivalence ratio studied, hydrogen abstraction by hydroxyl radicals dominates the initial destruction of both benzene and chlorobenzene. Chlorinated byproducts (i.e., chlorophenol and vinyl chloride) were formed from chlorobenzene oxidation in similar quantities and at similar temperatures to their respective analogue formed during benzene oxidation (i.e., phenol and ethylene).  相似文献   
43.
The critical diameter and critical thickness of two heterogeneous explosives were measured experimentally. By comparing these experimentally determined values of critical diameter and critical thickness, the role of front curvature in the failure of the detonation can be investigated. Current theories of detonation based on front curvature would predict the critical diameter should be twice the critical thickness. Experimentally, the expected two-to-one ratio was only validated for the case of a heterogeneous explosive with very fine scale heterogeneities. The ratios of critical diameter to critical thickness (for the two selected explosives) are also compared to previously measured values for homogeneous (liquid) explosives in order to contrast the dominant failure mechanism in these different explosives.  相似文献   
44.
45.
The objectives of this study were to examine the application of the divalent cation bridging theory (DCBT) to improve settling, dewatering, and effluent quality in pilot-scale reactors and a full-scale system treating an industrial wastewater. This was accomplished by lowering the monovalent-to-divalent (M/D) cation ratio by direct divalent cation addition. Research has shown that the M/D ratio is a potential indicator for settling and dewatering problems at wastewater treatment plants, and M/D ratios above 2 have been associated with poor settling, dewatering, and effluent quality. The M/D ratio of the wastewater in this study ranged from 6 to 20. The cations studied were calcium and magnesium. Results showed that the addition of calcium improved floc properties compared to control reactors with no calcium addition. The reductions in sludge volume index, effluent chemical oxygen demand (COD), and effluent total suspended solids (TSS) were approximately 35, 34, and 55%, respectively, when the M/D ratio was decreased to approximately 2:1. In addition, the cake solids from a belt filter press simulator increased by 72% and the optimum polymer dose required for conditioning was reduced by 70% in the reactor fed the highest calcium concentration when compared to control reactors with no calcium addition. The addition of calcium also decreased the negative effect of high filamentous organism numbers. In general, the addition of magnesium (Mg2+) had similar effects on effluent quality and dewatering properties, although some differences were measured. A full-scale test using calcium addition was performed. Measurements of effluent quality and floc properties were performed before, during, and after the calcium (Ca2+) addition period. The average M/D ratio during these periods was 6.2, 4.6, and 14.0, respectively. The addition of Ca2+ decreased the effluent five-day biochemical oxygen demand, effluent TSS, and effluent COD. The increased Ca2+ concentration also improved dewatering measured by a decrease in specific resistance to filtration and capillary suction time. Overall, the addition of divalent cations to the pilot- and full-scale activated sludge systems improved floc properties and the data fit well with the DCBT.  相似文献   
46.
This article describes a design approach that has been developed for bioremediation of chlorinated volatile organic compound–impacted groundwater that is based upon experience gained during the past 17 years. The projects described in the article generally involve large‐scale enhanced anaerobic dechlorination (EAD) and combined aerobic/anaerobic bioremediation techniques. Our design approach is based on three primary objectives: (1) selecting and distributing the proper additives (including bioaugmentation) within the targeted treatment zone; (2) maintaining a neutral pH (and adding alkalinity when needed); and (3) sustaining the desired conditions for a sufficient period of time for the bioremediation process to be fully completed. This design approach can be applied to both anaerobic and aerobic bioremediation systems. Site‐specific conditions of hydraulic permeability, groundwater velocity, contaminant type and concentrations, and regulatory constraints will dictate the best remedial approach and design parameters for in situ bioremediation at each site. The biggest challenges to implementing anaerobic bioremediation processes are generally the selection and delivery of a suitable electron donor and the proper distribution of the donor throughout the targeted treatment zone. For aerobic bioremediation processes, complete distribution of adequate concentrations of a suitable electron acceptor, typically oxygen or oxygen‐yielding compounds such as hydrogen peroxide, is critical. These design approaches were developed based on understanding the biological processes involved and the mechanics of groundwater flow. They have evolved based on actual applications and results from numerous sites. An EAD treatment system, based on our current design approach, typically uses alcohol as a substrate, employs groundwater recirculation to distribute additives, and has an operational period of two to four years. An aerobic in situ treatment system based on our current design approach typically uses pure oxygen or hydrogen peroxide as an electron acceptor, may involve enhancements to groundwater flow for better distribution, and generally has an operational period of one to four years. These design concepts and specific project examples are presented for 17 sites. © 2012 Wiley Periodicals, Inc.  相似文献   
47.
This paper investigates the social context in which career decisions are made. Results show that beyond individual‐level factors such as demographics and work history, individuals' decisions to change careers are socially embedded. Findings suggest that the greater the diversity of an individual's network of advisors, the greater the likelihood that an individual will change careers. In addition, this paper explores the mechanisms through which different subsets of advice relationships — instrumental versus psychosocial — affect the decision to change careers. Results show that the greater the diversity of an individual's set of instrumental relations, the greater the number of offers he or she receives during the job search process and, further, that the number of offers received is positively related to the likelihood of changing careers. The diversity of an individual's set of psychosocial relations was related to his or her confidence to overcome career obstacles. However, confidence was not, in turn, related to career change, counter to expectations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
48.
Many surface and ground waters in the continental US are contaminated with a variety of chemical pollutants, which are usually present in concentrations in the ppm and ppb range. The effects of these pollutants on coliform bacteria, which are prominent members of the aquatic flora, are poorly understood. Using a microtiter plate assay, isolates of Escherichia coli (from chicken intestine and fresh water), and an isolate of Klebsiella pneumoniae (from bovine milk) were exposed to varying concentrations of common pollutants over a 24 h period. The herbicides/pesticides simazine, atrazine, and diazinon; the VOCs trichloroethene and MTBE; the estrogens estradiol and estrone; and caffeine, all failed to inhibit bacterial growth at ppm levels. Only ethylene glycol, and the herbicide 2,4-D, significantly inhibited bacterial growth compared to controls. These results suggest that the replication of coliform bacteria in fresh waters is not adversely impacted by many common pollutants.  相似文献   
49.
The main objective of this research was to test the hypothesis that bioavailable protein and, more specifically, the sulfur-containing amino acids within the protein, can be degraded by proteolytic enzymes to produce odor-causing compounds--mainly volatile sulfur compounds (VSCs)--during biosolids storage. To achieve these objectives, samples of digester effluent and cake solids were collected at 11 different wastewater treatment plants in North America, and the samples were analyzed for protein and amino acid content and general protein-degrading enzyme activity. At the same time, cake samples were stored using headspace bottles, the concentration of VSCs were measured using gas chromatography, and olfactometry measurements were made by a trained odor panel. The results showed that the bound cake protein content and methionine content was well-correlated with VSC production and the detection threshold measured by the odor panel.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号