首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108949篇
  免费   1802篇
  国内免费   6545篇
安全科学   4611篇
废物处理   4367篇
环保管理   15611篇
综合类   29325篇
基础理论   29337篇
环境理论   76篇
污染及防治   22136篇
评价与监测   6192篇
社会与环境   4431篇
灾害及防治   1210篇
  2023年   640篇
  2022年   1383篇
  2021年   1334篇
  2020年   1051篇
  2019年   1283篇
  2018年   1675篇
  2017年   1874篇
  2016年   2862篇
  2015年   2664篇
  2014年   3717篇
  2013年   10766篇
  2012年   3595篇
  2011年   4126篇
  2010年   4245篇
  2009年   4383篇
  2008年   3409篇
  2007年   3221篇
  2006年   3401篇
  2005年   3082篇
  2004年   3208篇
  2003年   3162篇
  2002年   2673篇
  2001年   3082篇
  2000年   2634篇
  1999年   2059篇
  1998年   1810篇
  1997年   1734篇
  1996年   1809篇
  1995年   1883篇
  1994年   1734篇
  1993年   1529篇
  1992年   1488篇
  1991年   1403篇
  1990年   1330篇
  1989年   1294篇
  1988年   1125篇
  1987年   1032篇
  1986年   1030篇
  1985年   1093篇
  1984年   1186篇
  1983年   1204篇
  1982年   1194篇
  1981年   1115篇
  1980年   952篇
  1979年   943篇
  1978年   836篇
  1977年   730篇
  1976年   660篇
  1973年   658篇
  1972年   672篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
33.
This study evaluated the hydrolysis and photolysis kinetics of pyraclostrobin in an aqueous solution using ultra-high-performance liquid chromatography–photodiode array detection and identified the resulting metabolites of pyraclostrobin by hydrolysis and photolysis in paddy water using high-resolution mass spectrometry coupled with liquid chromatography. The effect of solution pH, metal ions and surfactants on the hydrolysis of pyraclostrobin was explored. The hydrolysis half-lives of pyraclostrobin were 23.1–115.5?days and were stable in buffer solution at pH 5.0. The degradation rate of pyraclostrobin in an aqueous solution under sunlight was slower than that under UV photolysis reaction. The half-lives of pyraclostrobin in a buffer solution at pH 5.0, 7.0, 9.0 and in paddy water were less than 12?h under the two light irradiation types. The metabolites of the two processes were identified and compared to further understand the mechanisms underlying hydrolysis and photolysis of pyraclostrobin in natural water. The extracted ions obtained from paddy water were automatically annotated by Compound Discoverer software with manual confirmation of their fragments. Two metabolites were detected and identified in the pyraclostrobin hydrolysis, whereas three metabolites were detected and identified in the photolysis in paddy water.  相似文献   
34.
35.
Article impact statement: The optimism permeating biological conservation should be recalibrated considering the future that present times portend.  相似文献   
36.
Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35–60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.  相似文献   
37.

Equilibrium sorption studies of anionic species of arsenite, As(III) ions and arsenate As(V) ions onto two biosorbents, namely, chitosan and nanochitosan, have been investigated and compared. The results and trends in the sorption behavior are novel, and we have observed during the sorption process of the As(III) and As(V) on chitosan, a slow process of desorption occurred after an initial maximum adsorption capacity was achieved, before reaching a final but lower equilibrium adsorption capacity. The same desorption trend, however, is not observed on nanochitosan. The gradual desorption of As(III) and As(V) in the equilibrium sorption on chitosan is attributed to the different fractions of the dissociated forms of arsenic on the adsorbent surface and in solution and the extent of protonation of chitosan with the changing of solution pH during sorption. The change of solution pH during the sorption of arsenite ions on chitosan was also influenced by the interaction between the buffering effect of the arsenite species in the aqueous medium and the physical properties of chitosan. The final equilibrium adsorption capacity of chitosan for As(III) and As(V) was found to be around 500 and 8000 μg/g, respectively, whereas the capacities on nanochitosan are 6100 and 13,000 μg/g, respectively.

  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号