首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   33篇
  国内免费   10篇
安全科学   43篇
废物处理   31篇
环保管理   167篇
综合类   102篇
基础理论   230篇
环境理论   1篇
污染及防治   139篇
评价与监测   48篇
社会与环境   26篇
灾害及防治   13篇
  2024年   1篇
  2023年   10篇
  2022年   7篇
  2021年   10篇
  2020年   17篇
  2019年   18篇
  2018年   28篇
  2017年   25篇
  2016年   34篇
  2015年   25篇
  2014年   37篇
  2013年   62篇
  2012年   41篇
  2011年   62篇
  2010年   37篇
  2009年   35篇
  2008年   44篇
  2007年   48篇
  2006年   43篇
  2005年   31篇
  2004年   20篇
  2003年   22篇
  2002年   36篇
  2001年   14篇
  2000年   12篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1978年   4篇
  1970年   2篇
  1967年   1篇
排序方式: 共有800条查询结果,搜索用时 479 毫秒
41.
This study evaluated the abilities of various plant species to act as bio-monitors for environmental uranium (U) contamination. Vegetation and soil samples were collected from a U processing facility. The water-way fed from facility storm and processing effluents was the focal sample site as it represented a primary U transport mechanism. Soils and sediments from areas exposed to contamination possessed U concentrations that averaged 630 mg U kg(-1). Aquatic mosses proved to be exceptional accumulators of U with dry weight (dw) concentrations measuring as high as 12,500 mg U kg(-1) (approximately 1% of the dw mass was attributable to U). The macrophytes (Phragmites communis, Scripus fontinalis and Sagittaria latifolia) were also effective accumulators of U. In general, plant roots possessed higher concentrations of U than associated upper portions of plants. For terrestrial plants, the roots of Impatiens capensis had the highest observed levels of U accumulation (1030 mg kg(-1)), followed by the roots of Cyperus esculentus and Solidago speciosa. The concentration ratio (CR) characterized dry weight (dw) vegetative U levels relative to that in associated dw soil. The plant species that accumulated U at levels in excess of that found in the soil were: P. communis root (CR, 17.4), I. capensis root (CR, 3.1) and S. fontinalis whole plant (CR, 1.4). Seven of the highest ten CR values were found in the roots. Correlations with concentrations of other metals with U were performed, which revealed that U concentrations in the plant were strongly correlated with nickel (Ni) concentrations (correlation: 0.992; r-squared: 0.984). Uranium in plant tissue was also strongly correlated with strontium (Sr) (correlation: 0.948; r-squared: 0.899). Strontium is chemically and physically similar to calcium (Ca) and magnesium (Mg), which were also positively-correlated with U. The correlation with U and these plant nutrient minerals, including iron (Fe), suggests that active uptake mechanisms may influence plant U accumulation.  相似文献   
42.
43.
ABSTRACT

Aerosol water content was determined from relative humidity controlled optical particle counter (ASASP-X) size distribution measurements made during the Southeastern Aerosol and Visibility Study (SEAVS) in the Great Smoky Mountains National Park during summer 1995. Since the scattering response function of the ASASP-X is sensitive to particle refractive index, a technique for calibrating the ASASP-X for any real refractive index was developed. A new iterative process was employed to calculate water mass concentration and wet refractive index as functions of relative humidity. Experimental water mass concentrations were compared to theoretically predicted values assuming only ammonium sulfate compounds were hygroscopic. These comparisons agreed within experimental uncertainty. Estimates of particle hygroscopicity using a rural aerosol model of refractive index as a function of relative humidity demonstrated no significant differences from those made with daily varying refractive index estimates. Although aerosol size parameters were affected by the assumed chemical composition, forming ratios of these parameters nearly canceled these effects.  相似文献   
44.
45.
Frey, Ashley E., Francisco Olivera, Jennifer L. Irish, Lauren M. Dunkin, James M. Kaihatu, Celso M. Ferreira, and Billy L. Edge, 2010. Potential Impact of Climate Change on Hurricane Flooding Inundation, Population Affected and Property Damages in Corpus Christi. Journal of the American Water Resources Association (JAWRA) 1–11. DOI: 10.1111/j.1752-1688.2010.00475.x Abstract: The effect of climate change on storm-surge flooding and the implications for population and structural damages on the city of Corpus Christi, Texas, was investigated. The study considered the influence of sea level rise and hurricane intensification, both influenced by climate change. Combinations of future carbon dioxide equivalent emission rates and carbon dioxide doubling sensitivities, based on findings of the Intergovernmental Panel on Climate Change, were considered to define future climate scenarios. A suite of physically based numerical models for hurricane winds and the resulting waves, surge, and morphological change at the coast were used to determine flooded areas, population affected, and property damages for Hurricanes Bret, Beulah, and a version of Carla shifted south from its original track, under present and predicted future climate conditions. A comparison of the economic damages for current climate conditions and for the 2080s climate scenario shows that, for Carla (shifted), there will be an increase in the range of $270-1,100 million; for Beulah, of $100-390 million; and, for Bret, of $30-280 million. A similar analysis was also conducted for 2030s predicted climate scenarios. Overall, the comparison of the results for the different climate conditions indicates what the destructive consequences of climate change could be, even within the somewhat short time frame of 80 years considered here.  相似文献   
46.
Abstract

Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area’s ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service’s Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.  相似文献   
47.
48.
Environmental Science and Pollution Research - Telomere length (TL) at birth is related to diseases that may arise in the future and long-term health. Bisphenols exhibit toxic effects and can cross...  相似文献   
49.
Experimental and theory-based investigations have been carried out on the oxidation and adsorption mechanism of mercury (Hg) on brominated activated carbon (AC). Air containing parts per billion concentrations of Hg was passed over a packed-bed reactor with varying sorbent materials at 140 and 30 degrees C. Through X-ray photoelectron spectroscopy surface characterization studies it was found that Hg adsorption is primarily associated with bromine (Br) on the surface, but that it may be possible for surface-bound oxygen (O) to play a role in determining the stability of adsorbed Hg. In addition to surface characterization experiments, the interaction of Hg with brominated AC was studied using plane-wave density functional theory. Various configurations of hydrogen, O, Br, and Hg on the zigzag edge sites of graphene were investigated, and although Hg-Br complexes were found to be stable on the surface, the most stable configurations found were those with Hg adjacent to O. The Hg-carbon (C) bond length ranged from 2.26 to 2.34 A and is approximately 0.1 A shorter when O is a nearest-neighbor atom rather than a next-nearest neighbor, resulting in increased stability of the given configuration and overall tighter Hg-C binding. Through a density of states analysis, Hg was found to gain electron density in the six p-states after adsorption and was found to donate electron density from the five s-states, thereby leading to an oxidized surface-bound Hg complex.  相似文献   
50.
Recently, interest has developed for using essential oils from Western juniper (Juniperus occidentalis) foliage and Port Orford cedar (Chamaecyparis lawsoniana) heartwood in commercial products such as pest repellents and cosmetics. In order to gauge the relative toxicological risk that these oils pose to freshwater and marine organisms, the acute aquatic toxicity of these oils was evaluated using OPPTS guidelines to the cladoceran Daphnia magna, the rainbow trout Oncorhynchus mykiss and the green alga Selenastrum capricornutum. For western juniper foliage oil, no toxicity was exhibited toward D. magna or O. mykiss, even at 5.0 mg/L (the highest concentration tested and limit of solubility). For toxicity to S. capricornutum using algal cell density, the 72 and 96 h EC50 value was 1.7 mg/L and the no observable effect concentration (NOEC) was 0.63 mg/L. For Port Orford cedar heartwood oil, no toxicity was exhibited toward O. mykiss or S. capricornutum, even at 5.0 mg/L (the highest concentration tested and limit of solubility). The 48-h D. magna EC50 value was 1.9 mg/L; the NOEC values for algal cell density were 1.25 mg/L (72 h) and 0.63 mg/L (96 h). In summary, this study shows that western juniper foliage and Port Orford cedar heartwood oils demonstrate little to no risk to aquatic organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号