首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1364篇
  免费   15篇
  国内免费   19篇
安全科学   55篇
废物处理   61篇
环保管理   206篇
综合类   248篇
基础理论   288篇
环境理论   2篇
污染及防治   339篇
评价与监测   112篇
社会与环境   79篇
灾害及防治   8篇
  2023年   17篇
  2022年   29篇
  2021年   33篇
  2020年   21篇
  2019年   27篇
  2018年   41篇
  2017年   33篇
  2016年   40篇
  2015年   37篇
  2014年   47篇
  2013年   67篇
  2012年   66篇
  2011年   84篇
  2010年   55篇
  2009年   81篇
  2008年   69篇
  2007年   86篇
  2006年   55篇
  2005年   56篇
  2004年   55篇
  2003年   44篇
  2002年   47篇
  2001年   34篇
  2000年   20篇
  1999年   16篇
  1998年   22篇
  1997年   13篇
  1996年   17篇
  1995年   19篇
  1994年   15篇
  1993年   9篇
  1992年   13篇
  1991年   8篇
  1990年   15篇
  1989年   7篇
  1988年   8篇
  1987年   4篇
  1986年   10篇
  1985年   10篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1981年   3篇
  1979年   3篇
  1978年   3篇
  1976年   3篇
  1974年   3篇
  1972年   4篇
  1968年   3篇
  1965年   2篇
排序方式: 共有1398条查询结果,搜索用时 46 毫秒
81.
Sources and sinks of carbon associated with forests depend strongly on the management regime and spatial patterns in potential productivity. Satellite remote sensing can provide spatially explicit information on land cover, stand-age class, and harvesting. Carbon-cycle process models coupled to regional climate databases can provide information on potential rates of production and related rates of decomposition. The integration of remote sensing and modeling thus produces spatially explicit information on carbon storage and flux. This integrated approach was employed to compare carbon flux for the period 1992–1997 over two 165-km2 areas in western Oregon. The Coast Range study area was predominately private land managed for timber production, whereas the West Cascades study area was predominantly public land that was less productive but experienced little harvesting in the 1990s. In the Coast Range area, 17% of the land base was harvested between 1991 and 2000. Much of the area was in relatively young, productive-age classes that simulations indicate are a carbon sink. Mean annual harvest removals from the Coast Range were greater than mean annual net ecosystem production. On the West Cascades study area, a relatively small proportion (< 1%) of the land was harvested and the area as a whole was accumulating carbon. The spatially and temporally explicit nature of this approach permits identification of mechanisms underlying land base carbon flux. Published online  相似文献   
82.
This article presents a series of 49 km/h sled tests using the Hybrid III 6-year-old dummy in a high-back booster, a low-back booster, and a three-point belt. Although a 10-year review at a level I trauma center showed that noncontact cervical spine injuries are rare in correctly restrained booster-age children, dummy neck loads exceeded published injury thresholds in all tests. The dummy underwent extreme neck flexion during the test, causing full-face contact with the dummy's chest. These dummy kinematics were compared to the kinematics of a 12-year-old cadaver tested in a similar impact environment. The cadaver test showed neck flexion, but also significant thoracic spinal flexion which was nonexistent in the dummy. This comparison was expanded using MADYMO simulations in which the thoracic spinal stiffness of the dummy model was decreased to give a more biofidelic kinematic response. We conclude that the stiff thoracic spine of the dummy results in high neck forces and moments that are not representative of the true injury potential.  相似文献   
83.
This study investigated the liming effect of water treatment sludge on acid mine spoils. The study was conducted with sludge from a water purification plant along the Vaal River catchments in South Africa. The optimum application rate for liming acid spoils and the speed and depth with which the sludge reacted with the mine waste were investigated. Chemical analysis indicated that the sludge is suitable as a liming agent because of its alkaline pH (8.08), high bicarbonate concentration (183.03 mg L(-1)), and low salinity (electrical conductivity = 76 mS m(-1)). The high cation exchange capacity of 15.47 cmol(c) kg(-1) and elevated nitrate concentration (73.16 mg L(-1)) also increase its value as an ameliorative material. The soluble concentrations for manganese, aluminum, lead, and selenium were high at a pH of 5 although only selenium (0.83 mg L(-1)) warranted some concern. According to experimental results, the application of 10 Mg ha(-1) of sludge to acid gold tailings increased the leach water pH from 4.5 to more than 7.5 and also increased the medium pH from 2.4 to 7.5. The addition of sludge further reduced the solubility of iron, manganese, copper, and zinc in the ameliorated gold tailings, but increased the electrical conductivity. The liming tempo was highest in the coal discard profile that had a coarse particle size distribution and took the longest to move through the gold tailings that had a fine particle size distribution. Results from this study indicate that the water treatment sludge investigated is suitable as a liming agent for rehabilitation of acid mine waste.  相似文献   
84.
In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.  相似文献   
85.
ABSTRACT: Net precipitation under old growth Douglas fir forest in the Bull Run Municipal Watershed (Portland, Oregon) totaled 1739 mm during a 4Cbweek period, 387 mm more than in adjacent clearcut areas. Expressing data on a full water year basis and adjusting gross precipitation for losses due to rainfall interception suggest fog drip could have added 882 mm (35 in) of water to total precipitation during a year when precipitation measured 2160 mm in a rain gage in a nearby clearing. Standard rain gages installed in open areas where fog is common may be collecting up to 30 percent less precipitation than would be collected in the forest. Long term forest management (Le., timber harvest) in the watershed could reduce annual water yield and, more importantly, summer stream flow by reducing fog drip.  相似文献   
86.
ABSTRACT: Medical geography studies both areal patterns of human health and disease and the environmental and cultural factors that contribute to such conditions. In such studies water resources are of major importance, not only because they are essential for life and their scenic beauty is of inspirational value, but also because they are involved, directly or indirectly, in more than 80 percent of all disease. The direct involvements result from various disease causing agents sometimes found in surface or ground water organic ones such as bacteria, worms, etc., which are known as pathogens, and inorganic ones such as trace elements and synthetic toxic chemicals. Surface waters may have indirect effects also, for they may serve as habitats or breeding places for organisms that do not themselves cause human disease but that serve as vectors or hosts for such pathogens. This paper will discuss these various roles of water resources in both endemic and epidemic disease occurrences and ways in which various human activities domestic, economic, recreational, or religious — increase or reduce our exposure to such diseases.  相似文献   
87.
Present and future annual methane flux estimates out of landfills, rice paddies and natural wetlands, as well as the sorption capacity of aerobic soils for atmospheric methane, are assessed. The controlling factors and uncertainties with regard to soil methanogenesis and methanotrophy are also briefly discussed.The actual methane emission rate out of landfills is estimated at about 40 Tg yr–1. Changes in waste generation, waste disposal and landfill management could have important consequences on future methane emissions from waste dumps. If all mitigating options can be achieved towards the year 2015, the CH4 emission rate could be reduced to 13 Tg yr–1. Otherwise, the emission rate from landfills could increase to 63 Tg yr–1 by the year 2025. Methane emission from rice paddies is estimated at 60 Tg yr–1. The predicted increase of rice production between the years 1990 and 2025 could cause an increase of the CH4 emission rate to 78 Tg yr–1 by the year 2025. When mitigating options are taken, the emission rate could be limited to 56 Tg yr–1. The methane emission rate from natural wetlands is about 110 Tg yr–1. Because changes in the expanse of natural wetland area are difficult to assess, it is assumed that methane emission from natural wetlands would remain constant during the next 100 years. Because of uncertainties with regard to large potential soil sink areas (e.g. savanna, tundra and desert), the global sorption capacity of aerobic soils for atmospheric methane is not completely clear. The actual estimate is 30 Tg yr–1.In general, the net contribution of soils and landfills to atmospheric methane is estimated at 180 Tg yr–1 (210 Tg yr–1 emission, 30 Tg yr–1 sorption). This is 36% of the global annual methane flux (500 Tg yr–1).  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号