首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5001篇
  免费   141篇
  国内免费   63篇
安全科学   274篇
废物处理   172篇
环保管理   1249篇
综合类   541篇
基础理论   1368篇
环境理论   8篇
污染及防治   1040篇
评价与监测   320篇
社会与环境   178篇
灾害及防治   55篇
  2023年   57篇
  2022年   54篇
  2021年   56篇
  2020年   64篇
  2019年   70篇
  2018年   124篇
  2017年   137篇
  2016年   180篇
  2015年   122篇
  2014年   161篇
  2013年   419篇
  2012年   234篇
  2011年   308篇
  2010年   205篇
  2009年   239篇
  2008年   269篇
  2007年   269篇
  2006年   234篇
  2005年   200篇
  2004年   184篇
  2003年   150篇
  2002年   145篇
  2001年   91篇
  2000年   99篇
  1999年   70篇
  1998年   74篇
  1997年   60篇
  1996年   64篇
  1995年   78篇
  1994年   74篇
  1993年   66篇
  1992年   57篇
  1991年   40篇
  1990年   35篇
  1989年   36篇
  1988年   30篇
  1987年   39篇
  1986年   40篇
  1985年   39篇
  1984年   44篇
  1983年   44篇
  1982年   52篇
  1981年   43篇
  1980年   31篇
  1979年   15篇
  1978年   29篇
  1977年   16篇
  1976年   13篇
  1972年   7篇
  1971年   9篇
排序方式: 共有5205条查询结果,搜索用时 406 毫秒
91.
This paper provides the background to this special issue, outlining the extent to which the global atmospheric nitrogen cycle has been modified by human activity and outlining the range of effects. The global total emissions of reduced and oxidized nitrogen, amount to 124 Tg N, and exceed those from natural sources (34 Tg N) by almost a factor of four showing the extent to which anthropogenic activity has taken over the global N cycle. Of the 124 Tg N, 70 Tg N is emitted in the oxidized form, largely as NO and 70% of which results directly from anthropogenic activity. The remaining 54 Tg N is emitted as NH3, (66% anthropogenic). The enhanced nitrogen emissions are associated with a range of local, regional and global issues including, acidification, eutrophication, climate change, human health and tropospheric O3. The paper also places the Global Nitrogen Enrichment (GaNE) research programme in the UK in a wider perspective.  相似文献   
92.
Impact of Land Use on Soluble Organic Nitrogen in Soil   总被引:5,自引:0,他引:5  
Although it has been hypothesized that soluble organic nitrogen (SON) plays a central role in regulating productivity in some terrestrial ecosystems, the factors controlling the size of the SON pool in soil remain poorly understood. Therefore our principal aim in this work was to assess the impact of seven different land use systems (rough and managed grassland, deciduous and coniferous woodland, heathland, wetland and tilled land) on the size of the SON and inorganic N (NO 3 , NH 4 + ) pools in the surface soil layer (0–15 cm). After extraction with deionised water, we found that in most cases the size of the water extractable organic N (WEON) pool was similar in size to the inorganic N pool. In contrast, the KCl extractable organic N (KClEON) pool constituted the dominant form of soluble N in soils under all land uses, perhaps indicating that significant amounts were held on the soil exchange phase. In contrast to inorganic N, which varied significantly with land use, the size of the KClEON and WEON pool was similar for all land uses with the exception of KClEON in tilled land, where significantly lower amounts were observed. We conclude that SON constitutes an important soil N pool in a broad range of land uses, and that its role in microbial N assimilation, plant nutrition and ecosystem responses to atmospheric N deposition warrants further attention. SAFRD, University of Newcastle, Newcastle-upon-Tyne, NE1 7RU, U.K.  相似文献   
93.
Dissolved nitrous oxide (N2O), nitrate (NO3 -), and ammonium (NH4 +) concentrations in an agricultural field drain were intensively measured over the period of field nitrogen (N) fertilisation and for several weeks thereafter. Supersaturations of dissolved N2O were observed in field drain waters throughout the study. On entry to an open drainage ditch, concentrations of dissolved N2O rapidly decreased and a total N2O-N emission via this pathway of 13.2 g over the period of study (45 days) was calculated. This compared with a predicted emission of the order of 300 g, based on measured losses of NO3 - and NH4 + in the field drainage water, and the default IPCC emission factor of 0.01 kg N2O-N per kg Nentering rivers and estuaries. In contrast to widespread evidence of a clear relationship between the amount of N applied to agricultural land and subsequent direct N2O emission from the soil surface, the relationship between the amount of N2O in soil drainage waters and the amount of N applied was poor. We conclude that the complexity, both spatially and temporally, of the processes ultimately responsible for the amount of N2O in agricultural drainage waters make a straightforward relationship between N2O concentration and N application rate unlikely in all but the simplest of systems.  相似文献   
94.
95.
96.
Recent targets for reduced amounts of waste to landfills in Sweden will result in a large increase in waste incineration with recovery of energy, used primarily for district heating. The aim of this study is to investigate what changes in the usage of other fuels and technologies for district heat production would be caused by this increase. A questionnaire was sent out to the largest district heating companies, and simulations in an energy systems model were carried out. The analysis shows that increased waste incineration reduces the demand for other fuels, especially biomass, for district heat production. The effects include reductions in operating hours as well as the avoidance or postponement of investments in new plants for district heat production. Increased waste incineration will also lead to a greater use of district heating in Sweden.  相似文献   
97.
ABSTRACT: Erosion from construction sites significantly affects water quality in receiving streams. A rainfall simulator was used to evaluate the effectiveness of different methods for controlling erosion from construction sites. Erosion control methods investigated included dry and liquid applications of polyacrylamide (PAM), hydroseed, and straw mulch. Fertilizer was also applied to each plot to examine the effectiveness of the methods in reducing nutrient losses in runoff. Runoff samples were analyzed for total suspended solids (TSS), nitrate, total Kjeldahl nitrogen (TKN), ammonium, total phosphorus (TP), and orthophosphate. Among all treatments investigated, straw mulch was the most effective treatment for controlling TSS and nutrient losses during short term and long term simulations. The low liquid PAM (half the recommended PAM) treatment resulted in the highest reduction in runoff, TSS bound nitrogen, and total nitrogen (TN) concentrations and loadings. The study results indicate that a high application rate (twice the recommended rate) of PAM could actually increase runoff and TSS losses. At a low application rate, both liquid and dry PAM were effective in reducing TSS and nutrient losses in runoff. However, application of the liquid form of PAM to construction sites is more practical and perhaps more economical than applying the PAM in the dry form.  相似文献   
98.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   
99.
ABSTRACT: Individual particle analysis (IPA) by scanning electron microscopy interfaced with automated image and X‐ray analyses was used to characterize inorganic particles in five reservoirs and four tributaries located within the Catskill and Delaware systems of the New York City water supply. Individual particle analysis provides combined elemental and morphologic characterizations. Results are presented in terms of particle projected area per unit volume (PAV), consistent with optical impacts, and partitioned into seven generic particle types according to composition. Minerals of terrigenous origins, particularly clay minerals, dominated the inorganic particle populations of all the study systems except one downstream reservoir. Higher PAV levels were observed in the Catskill system. Particle dynamics represented by PAV were driven primarily by runoff, while the reservoirs were also greatly influenced by the timing of sediment resuspension promoted by drawdown of the surface and fall mixing. The benefit of the serial configuration of the reservoirs in decreasing inorganic particles with progression downstream towards the city is demonstrated. The patterns in PAV levels among the study systems generally tracked those of more common metrics of impacts of suspensoids, including mass concentrations of suspended solids, turbidity, and Secchi disc transparency.  相似文献   
100.
Providing an accurate estimate of the dry component of N deposition to low N background, semi-natural habitats, such as bogs and upland moors dominated by Calluna vulgaris is difficult, but essential to relate nitrogen deposition to effects in these communities. To quantify the effects of NH3 inputs to moorland vegetation growing on a bog at a field scale, a field release NH3 fumigation system was established at Whim Moss (Scottish Borders) in 2002. Gaseous NH3 from a line source was released along of a 60 m transect, when meteorological conditions (wind speed >2.5 m s?1 and wind direction in the sector 180–215°) were met, thereby providing a profile of decreasing NH3 concentration with distance from the source. In a complementary study, using a NH3 flux chamber system, the relationships between NH3 concentrations and cuticular resistances were quantified for a range of NH3 concentrations and micrometeorological conditions for moorland vegetation. Cuticular resistances increased with NH3 concentration from 11 s m?1 at 3.0 μg m?3 to 30 s m?1 at 30 μg m?3. The NH3 concentration data and the concentration-dependent canopy resistance are used to calculate NH3 deposition taking into account leaf surface wetness. The implications of using an NH3 concentration-dependent cuticular resistance and the importance for refining critical loads are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号