首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   0篇
  国内免费   4篇
安全科学   3篇
废物处理   5篇
环保管理   11篇
综合类   37篇
基础理论   40篇
污染及防治   86篇
评价与监测   9篇
社会与环境   6篇
灾害及防治   2篇
  2021年   3篇
  2017年   1篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   14篇
  2012年   6篇
  2011年   20篇
  2010年   13篇
  2009年   16篇
  2008年   8篇
  2007年   8篇
  2006年   17篇
  2005年   15篇
  2004年   14篇
  2003年   8篇
  2002年   7篇
  2001年   1篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   5篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1969年   1篇
  1965年   3篇
  1963年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
91.
92.
93.
Research on group living in animals is concentrated on highly social species, but studying less social species may hint at the factors possibly leading to the evolution of increased sociality. Thermoregulation is often thought to explain communal nesting in solitarily breeding mammals but also other factors may be involved. For example, it is observed that even solitary species may have cryptic kin cooperation. We studied factors affecting communal nesting in the Siberian flying squirrel. Flying squirrels breed solitarily but, similar to most other rodents, adults may sometimes huddle in groups. Communal nesting in flying squirrels was most frequent during winter and autumn, but also occurred during other seasons. This pattern was explained by the breeding season, which took place in the spring–summer, when communal nesting was less common. Neither monthly temperature, after accounting for breeding season, nor daily temperatures in winter explained communal nesting. Group size was small, two to three individuals. In most cases the group was a pair consisting of unrelated male and female, possibly indicating that group formation was related to mating behavior. This study contributes to the understanding of mammalian group formation in two major ways. First, our study contributes to the understanding of the role of relatedness in rodent group formation, demonstrating a case where close relatedness is not related to group formation. Second, our study indicates that in a solitarily breeding, rodent huddling may be more driven by other factors than temperature.  相似文献   
94.
In Canada approximately 45% of ammonia (NH3) emissions are attributed to dairy and beef cattle industries. The present study focused on NH3 emissions from a beef feedlot with a one-time capacity of 17,220 head. The aim was to improve the Canadian NH3 emission inventories and air quality forecasting capabilities. A Cessna 207, equipped with a fast-response NH3/NOy detector and a quadrupole aerosol mass spectrometer, was flown in a grid pattern covering an area of 8 × 8 km centered on a feedlot (800 × 800 m) at altitudes ranging from 30 to 300 m above ground. Stationary ground measurements of NH3 concentration and turbulence parameters were made downwind of the feedlot. Three flights were conducted under varying meteorological conditions, ranging from very calm to windy with near-neutral stratification. NH3 mixing ratios up to 100 ppbv were recorded on the calm day, up to 300 m above ground. An average feedlot NH3 emission rate of 76 ± 4 μg m?2 s?1 (equivalent to 10.2 g head?1 h?1) was estimated. Characteristics of the measured NH3 plume were compared to those predicted by a Lagrangian dispersion model. The spatially integrated pattern of NH3 concentrations predicted and measured agreed but the measured was often more complex than the predicted spatial distribution. The study suggests that the export of NH3 through advection accounted for about 90% of the emissions from the feedlot, chemical transformation was insignificant, and dry deposition accounted for the remaining 10%.  相似文献   
95.
Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the “One Sensor at Different Scales” (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R 2 of 0.83, which was transferred to airborne hyperspectral data on the local and regional scales. For this purpose, hyperspectral imagery was collected at three altitudes over a land cover gradient of 25 km within a timeframe of a few minutes, yielding a spatial resolution from 1 to 3 m. For all recorded spatial scales, both the LAI and the NDVI were determined. The spatial properties of LAI and NDVI of all recorded hyperspectral images were compared using semivariance metrics derived from the variogram. The first results show spatial differences in the heterogeneity of LAI and NDVI from 1 to 3 m with the recorded hyperspectral data. That means that differently recorded data on different scales might not sufficiently maintain the spatial properties of high spatial resolution hyperspectral images.  相似文献   
96.
Particulate matter (PM) has become a major research issue receiving increasing attention because of its significant negative impact on human health. There are main indicators that next to the morphological characteristics of the particle, also the chemical composition plays an important role in the adverse health effects of PM. In this context, the rather polar organic fraction of PM is expected to play a major role, and advanced analytical techniques are developed to improve the knowledge on the molecular composition of this fraction. One component class that deserves major attention consists of the oxygenated polycyclic aromatic hydrocarbons (PAHs). Those compounds are considered to be among the key compounds in PM toxicity. This paper presents a comprehensive review focusing on the analysis, fate and behavior of oxygenated PAHs in the atmosphere. The first part of the paper briefly introduces (i) the main sources and atmospheric pathways of oxygenated PAHs, (ii) available physical–chemical properties and (iii) their health effects. The second and main part of this paper gives a thorough discussion on the entire analytical sequence necessary to identify and quantify oxygenated PAHs on atmospheric PM. Special attention is given to critical parameters and innovations related to (i) sampling, (ii) sample preparation including both extraction and clean-up, and (iii) separation and detection. Third, the state-of-the-art knowledge about the atmospheric occurrence of oxygenated PAHs is discussed, including an extended overview of reported concentrations presented as a function of sampling season and geographical location. A clear seasonal effect is observed with the median of the oxygenated PAHs concentrations during winter being a factor of 3–4 higher than during summer. However, the oxygenated PAH/parent PAH ratio is about 20 times higher during summer, indicating the importance of photochemical activity in the atmosphere.  相似文献   
97.
98.
In order to estimate current external gamma doses to the population of the Russian territories contaminated as a result of the Chernobyl accident, absorbed gamma-dose rates in air (DR) were determined at typical urban and suburban locations. The study was performed in the western districts of the Bryansk Region within the areas of 30 settlements (28 villages and 2 towns) with the initial levels of 137Cs deposition ranging from 13 to 4340 kBqm(-2). In the towns, the living areas considered were private one-story wooden and stone houses. DR values were derived from in situ measurements performed with the help of gamma-dosimeters and gamma-spectrometers as well as from the results of soil samples analysis. In the areas under study, the values of DR from terrestrial radionuclides were 25+/-6, 24+/-5, 50+/-10, 32+/-6, 54+/-11, 24+/-8, 20+/-6, 25+/-8, and 18+/-5 nGyh(-1) at locations of kitchen gardens, dirt surfaces, asphalt surfaces, wooden houses, stone houses, grasslands inside settlement, grasslands outside settlement, ploughed fields, and forests, respectively. In 1996-2001, mean normalized (per MBqm(-2) of 137Cs current inventory in soil) values of DR from (137)Cs were 0.41+/-0.07, 0.26+/-0.13, 0.15+/-0.07, 0.10+/-0.05, 0.05+/-0.04, 0.48+/-0.12, 1.04+/-0.22, 0.37+/-0.07, and 1.15+/-0.19 microGyh(-1) at the locations of kitchen gardens, dirt surfaces, asphalt surfaces, wooden houses, stone houses, grasslands inside settlement, grasslands outside settlement, ploughed fields, and forests, respectively. The radiometric data from this work and the values of occupancy factors determined for the Russian population by others were used for the assessments of annual effective doses to three selected groups of rural population. The normalized (per MBqm(-2) 137Cs current ground deposition) external effective doses to adults from 137Cs ranged from 0.66 to 2.27 mSvy(-1) in the years 1996-2001, in accordance with professional activities and structures of living areas. For the areas under study, the average external effective doses from 137Cs were estimated to be in the range of 0.39-1.34 mSvy(-1) in 2001. The average external effective doses from natural radionuclides appeared to be lower than those from the Chernobyl fallout ranging from 0.15 to 0.27 mSvy(-1).  相似文献   
99.
The 10th International Congress on Combustion Byproducts and their Health Effects was held in Ischia, Italy, from June 17-20, 2007. It is sponsored by the US NIEHS, NSF, Coalition for Responsible Waste Incineration (CRWI), and Electric Power Research Institute (EPRI). The congress focused on: the origin, characterization, and health impacts of combustion-generated fine and ultrafine particles; emissions of mercury and dioxins, and the development/application of novel analytical/diagnostic tools. The consensus of the discussion was that particle-associated organics, metals, and persistent free radicals (PFRs) produced by combustion sources are the likely source of the observed health impacts of airborne PM rather than simple physical irritation of the particles. Ultrafine particle-induced oxidative stress is a likely progenitor of the observed health impacts, but important biological and chemical details and possible catalytic cycles remain unresolved. Other key conclusions were: (1) In urban settings, 70% of airborne fine particles are a result of combustion emissions and 50% are due to primary emissions from combustion sources, (2) In addition to soot, combustion produces one, possibly two, classes of nanoparticles with mean diameters of?~10?nm and?~1?nm. (3) The most common metrics used to describe particle toxicity, viz. surface area, sulfate concentration, total carbon, and organic carbon, cannot fully explain observed health impacts, (4) Metals contained in combustion-generated ultrafine and fine particles mediate formation of toxic air pollutants such as PCDD/F and PFRs. (5) The combination of metal-containing nanoparticles, organic carbon compounds, and PFRs can lead to a cycle generating oxidative stress in exposed organisms.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号