首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   27篇
  国内免费   9篇
安全科学   26篇
废物处理   15篇
环保管理   153篇
综合类   136篇
基础理论   183篇
环境理论   3篇
污染及防治   125篇
评价与监测   52篇
社会与环境   24篇
灾害及防治   7篇
  2023年   11篇
  2022年   7篇
  2021年   20篇
  2020年   28篇
  2019年   26篇
  2018年   28篇
  2017年   31篇
  2016年   34篇
  2015年   39篇
  2014年   23篇
  2013年   52篇
  2012年   39篇
  2011年   62篇
  2010年   36篇
  2009年   26篇
  2008年   36篇
  2007年   35篇
  2006年   41篇
  2005年   24篇
  2004年   17篇
  2003年   24篇
  2002年   19篇
  2001年   7篇
  2000年   6篇
  1999年   11篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有724条查询结果,搜索用时 140 毫秒
151.
Vespine wasps have been shown to deposit an attractive chemical in the nest entrance. Foragers use this to help locate the nest when returning to it. We determined how many individuals need to track (pass through) the entrance before the chemical is recognized. We found a logistic response as the number of tracks increased. At 200 tracks and above there was a 75–90% positive response rate to the chemical. We found no evidence of trail-marking behavior performed by foragers inside the nest entrance. We conclude that the trail is not an evolved signal, but is a cue composed of an accumulation of hydrocarbons deposited from the legs or feet of workers as they walk on a substrate. This is the first quantitative measurement of the attractiveness of the nest-entrance chemical in a social wasp.  相似文献   
152.
Urea‐N is a component of bioavailable dissolved organic nitrogen (DON) that contributes to coastal eutrophication. In this study, we assessed urea‐N in baseflow across land cover gradients and seasons in the Manokin River Basin on the Delmarva Peninsula. From March 2010 to June 2011, we conducted monthly sampling of 11 streams (4 tidal and 7 nontidal), 2 wastewater treatment plants, an agricultural drainage ditch, and groundwater underlying a cropped field. At each site, we measured urea‐N, DON, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NO3?‐N, and NH4+‐N. In general, urea‐N comprised between 1% and 6% of TDN, with the highest urea‐N levels in drainage ditches (0.054 mg N/L) and wetland‐dominated streams (0.035–0.045 mg N/L). While urea‐N did not vary seasonally in tidal rivers, nontidal streams saw distinct urea‐N peaks in summer (0.038 mg N/L) that occurred several months after cropland fertilization in spring. Notably, the proportion of wetlands explained 78% of the variance in baseflow urea‐N levels across the Manokin watershed. In wetland‐dominated basins, we found urea‐N was positively related to water temperature and negatively related to DOC:DON ratios, indicating short‐term urea‐N dynamics at baseflow were more likely influenced by instream and wetland‐driven processes than by recent agricultural urea‐N inputs. Findings demonstrate important controls of wetlands on baseflow urea‐N concentrations in mixed land‐use basins.  相似文献   
153.
We describe a new effort to enhance climate forecast relevance and usability through the development of a system for evaluating and displaying real‐time subseasonal to seasonal (S2S) climate forecasts on a watershed scale. Water managers may not use climate forecasts to their full potential due to perceived low skill, mismatched spatial and temporal resolutions, or lack of knowledge or tools to ingest data. Most forecasts are disseminated as large‐domain maps or gridded datasets and may be systematically biased relative to watershed climatologies. Forecasts presented on a watershed scale allow water managers to view forecasts for their specific basins, thereby increasing the usability and relevance of climate forecasts. This paper describes the formulation of S2S climate forecast products based on the Climate Forecast System version 2 (CFSv2) and the North American Multi‐Model Ensemble (NMME). Forecast products include bi‐weekly CFSv2 forecasts, and monthly and seasonal NMME forecasts. Precipitation and temperature forecasts are aggregated spatially to a United States Geological Survey (USGS) hydrologic unit code 4 (HUC‐4) watershed scale. Forecast verification reveals appreciable skill in the first two bi‐weekly periods (Weeks 1–2 and 2–3) from CFSv2, and usable skill in NMME Month 1 forecast with varying skills at longer lead times dependent on the season. Application of a bias‐correction technique (quantile mapping) eliminates forecast bias in the CFSv2 reforecasts, without adding significantly to correlation skill.  相似文献   
154.
Increasing atmospheric CO2 is both leading to climate change and providing a potential fertilisation effect on plant growth. However, southern Australia has also experienced a significant decline in rainfall over the last 30 years, resulting in increased vegetative water stress. To better understand the dynamics and responses of Australian forest ecosystems to drought and elevated CO2, the magnitude and trend in water use efficiency (WUE) of forests, and their response to drought and elevated CO2 from 1982 to 2014 were analysed, using the best available model estimates constrained by observed fluxes from simulations with fixed and time-varying CO2. The ratio of gross primary productivity (GPP) to evapotranspiration (ET) (WUEe) was used to identify the ecosystem scale WUE, while the ratio of GPP to transpiration (Tr) (WUEc) was used as a measure of canopy scale WUE. WUE increased significantly in northern Australia (p < 0.001) for woody savannas (WSA), whereas there was a slight decline in the WUE of evergreen broadleaf forests (EBF) in the southeast and southwest of Australia. The lag of WUEc to drought was consistent and relatively short and stable between biomes (≤3 months), but notably varied for WUEe, with a long time-lag (mean of 10 months). The dissimilar responses of WUEe and WUEc to climate change for different geographical areas result from the different proportion of Tr in ET. CO2 fertilization and a wetter climate enhanced WUE in northern Australia, whereas drought offset the CO2 fertilization effect in southern Australia.  相似文献   
155.
Breeding of golden hamsters is classically performed at thermal conditions ranging from 20 to 24 °C. However, growing evidence suggests that lactating females suffer from heat stress. We hypothesised that shaving females dorsally to maximise heat dissipation may reduce stress during reproduction. We thus compared faecal cortisol metabolites (FCM) from shaved golden hamster mothers with those from unshaved controls. We observed significantly lower FCM levels in the shaved mothers (F1,22?=?8.69, p?=?0.0075) pointing to lower stress due to ameliorated heat dissipation over the body surface. In addition, we observed 0.4 °C lower mean subcutaneous body temperatures in the shaved females, although this effect did not reach significance (F1,22?=?1.86, p?=?0.18). Our results suggest that golden hamsters having body masses being more than four times that of laboratory mice provide a very interesting model to study aspects of lactation and heat production at the same time.  相似文献   
156.
Regional Environmental Change - Despite internationally recognized definitions, there remains debate over what constitutes ‘actual’ degradation in various agro-pastoral contexts. This...  相似文献   
157.
158.
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号