首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   27篇
  国内免费   8篇
安全科学   18篇
废物处理   14篇
环保管理   130篇
综合类   115篇
基础理论   171篇
环境理论   3篇
污染及防治   107篇
评价与监测   33篇
社会与环境   24篇
灾害及防治   7篇
  2023年   10篇
  2022年   8篇
  2021年   20篇
  2020年   27篇
  2019年   25篇
  2018年   27篇
  2017年   29篇
  2016年   32篇
  2015年   35篇
  2014年   23篇
  2013年   48篇
  2012年   38篇
  2011年   56篇
  2010年   31篇
  2009年   21篇
  2008年   30篇
  2007年   32篇
  2006年   30篇
  2005年   20篇
  2004年   10篇
  2003年   18篇
  2002年   10篇
  2001年   3篇
  2000年   4篇
  1999年   8篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有622条查询结果,搜索用时 15 毫秒
81.
Environmental Science and Pollution Research - Methotrexate (MTX) and azathioprine (AZA) are chemotherapeutic, antimetabolic, and immunosuppressive agents with substantial risks such as oxidative...  相似文献   
82.
Environmental Science and Pollution Research - Despite significant investigation of fly ash spills and mineralogical controls on the release of potentially toxic elements (PTEs) from fly ash,...  相似文献   
83.
Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.  相似文献   
84.
Models can be used to direct the management of population spread for the control of invasives or to encourage species of conservation value. Analytical models are attractive because of their theoretical basis and limited data requirements, but there is concern that their simplicity may limit their practical utility. We address the applied use of simple models in a study of a declining annual herb, Rhinanthus minor. We parameterized a population-spread model using field data on demography and dispersal for four management systems: grazed only (GR), hay-cut once (H1), hay-cut twice (H2), and hay-cut with autumn grazing (HG). Within a replicated experiment we measured spread rates of introduced R. minor populations over eight years. The modeled and measured spread rates were very similar in terms of both patterns of management effects and absolute values, so that in both cases HG > H2, H1 > GR. The treatments affected both dispersal and demography (establishment and survival) and so we used decomposition approaches to analyze the major causes of differences in population spread. Increased dispersal under hay-cutting was more important than demographic changes and accounted for approximately 70% of the differences in spread rate between the hay-cut and grazed-only treatments. Furthermore, management effects on the tail of the dispersal curve were by far the most critical in governing spread. This study suggests that simple models can be used to inform practical conservation management, and we demonstrate straightforward uses of our model to predict the impacts of different management strategies. While simple models can give accurate projections, we emphasize that they must be parameterized with high-quality data gathered at the appropriate spatial scale.  相似文献   
85.
Dijkstra FA  West JB  Hobbie SE  Reich PB  Trost J 《Ecology》2007,88(2):490-500
In nitrogen (N)-limited systems, the potential to sequester carbon depends on the balance between N inputs and losses as well as on how efficiently N is used, yet little is known about responses of these processes to changes in plant species richness, atmospheric CO2 concentration ([CO2]), and N deposition. We examined how plant species richness (1 or 16 species), elevated [CO2] (ambient or 560 ppm), and inorganic N addition (0 or 4 g x m(-2) x yr(-1)) affected ecosystem N losses, specifically leaching of dissolved inorganic N (DIN) and organic N (DON) in a grassland field experiment in Minnesota, USA. We observed greater DIN leaching below 60 cm soil depth in the monoculture plots (on average 1.8 and 3.1 g N x m(-2) x yr(-1) for ambient N and N-fertilized plots respectively) than in the 16-species plots (0.2 g N x m(-2) x yr(-1) for both ambient N and N-fertilized plots), particularly when inorganic N was added. Most likely, loss of complementary resource use and reduced biological N demand in the monoculture plots caused the increase in DIN leaching relative to the high-diversity plots. Elevated [CO2] reduced DIN concentrations under conditions when DIN concentrations were high (i.e., in N-fertilized and monoculture plots). Contrary to the results for DIN, DON leaching was greater in the 16-species plots than in the monoculture plots (on average 0.4 g N x m(-2) x yr(-1) in 16-species plots and 0.2 g N x m(-2) x yr(-1) in monoculture plots). In fact, DON dominated N leaching in the 16-species plots (64% of total N leaching as DON), suggesting that, even with high biological demand for N, substantial amounts of N can be lost as DON. We found no significant main effects of elevated [CO2] on DIN or DON leaching; however, elevated [CO2] reduced the positive effect of inorganic N addition on DON leaching, especially during the second year of observation. Our results suggest that plant species richness, elevated [CO2], and N deposition alter DIN loss primarily through changes in biological N demand. DON losses can be as large as DIN loss but are more sensitive to organic matter production and turnover.  相似文献   
86.
Elmendorf SC  Moore KA 《Ecology》2007,88(10):2640-2650
There is currently no consensus on how physical and biological factors affect competitive intensity. Tests of whether competitive intensity varies along axes of environmental change have commonly been conducted in systems with a single strong environmental gradient, such as productivity, a soil resource, or an environmental stress. Frequently, these same axes are associated with changes in species composition, yet few studies have asked whether shifts in the identity of competitors affect competitive intensity. We ask whether resources (nutrients, water), stressors (heavy metals, Ca:Mg ratio), productivity (aboveground biomass), or species identity (an ordination axis of plant community composition) were the best predictors of the intensity of competition in a heterogeneous grassland landscape that included multiple independent environmental gradients. The reproductive fitness of six annual plant species was measured in the presence and absence of competitors and used to calculate relative interaction intensity (RII). We found that RII was best predicted by community composition. Nutrient availability was also important, and a post hoc test showed that competitive intensity was best explained by the combined effects of community composition and nutrient availability. We argue that community composition may be the most effective metric for predicting competitive intensity in many ecosystems because it includes both the competitive effects of the local community and information about covarying environmental characteristics.  相似文献   
87.
Employing in-depth, elite interviews, this empirical research contributes to understanding the dynamics among policy windows, policy change, and organizational learning. First, although much of the research on agenda setting—how issues attract enough attention that action is taken to address them—has been conducted at the national scale, this work explores the subnational, regional scale. With decentralization, regional-scale environmental decision-making has become increasingly important. Second, this research highlights the role of policy windows and instances of related organizational learning identified by natural resources managers. Having practitioners identify focusing events contrasts with the more typical approach of the researcher identifying a particular focusing event or events to investigate. A focusing event is a sudden, exceptional experience that, because of how it leads to harm or exposes the prospect for great devastation, is perceived as the impetus for policy change.  相似文献   
88.

Pyrolysis of waste materials to produce biochar is an excellent and suitable alternative supporting a circular bio-based economy. One of the properties attributed to biochar is the capacity for sorbing organic contaminants, which is determined by its composition and physicochemical characteristics. In this study, the capacity of waste-derived biochar to retain volatile fuel organic compounds (benzene, toluene, ethylbenzene and xylene (BTEX) and fuel oxygenates (FO)) from artificially contaminated water was assessed using batch-based sorption experiments. Additionally, the sorption isotherms were established. The results showed significant differences between BTEX and FO sorption on biochar, being the most hydrophobic and non-polar contaminants those showing the highest retention. Furthermore, the sorption process reflected a multilayer behaviour and a relatively high sorption capacity of the biochar materials. Langmuir and Freundlich models were adequate to describe the experimental results and to detect general differences in the sorption behaviour of volatile fuel organic compounds. It was also observed that the feedstock material and biochar pyrolysis conditions had a significant influence in the sorption process. The highest sorption capacity was found in biochars produced at high temperature (>?400 °C) and thus rich in aromatic C, such as eucalyptus and corn cob biochars. Overall, waste-derived biochar offers a viable alternative to be used in the remediation of volatile fuel organic compounds from water due to its high sorption capacity.

  相似文献   
89.
Jonathan M. H. Green  Gemma R. Cranston  William J. Sutherland  Hannah R. Tranter  Sarah J. Bell  Tim G. Benton  Eva Blixt  Colm Bowe  Sarah Broadley  Andrew Brown  Chris Brown  Neil Burns  David Butler  Hannah Collins  Helen Crowley  Justin DeKoszmovszky  Les G. Firbank  Brett Fulford  Toby A. Gardner  Rosemary S. Hails  Sharla Halvorson  Michael Jack  Ben Kerrison  Lenny S. C. Koh  Steven C. Lang  Emily J. McKenzie  Pablo Monsivais  Timothy O’Riordan  Jeremy Osborn  Stephen Oswald  Emma Price Thomas  David Raffaelli  Belinda Reyers  Jagjit S. Srai  Bernardo B. N. Strassburg  David Webster  Ruth Welters  Gail Whiteman  James Wilsdon  Bhaskar Vira 《Sustainability Science》2017,12(2):319-331
Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.  相似文献   
90.
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of “Green Chemistry” and “Green Engineering”, “Green Toxicology” aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号