We measured five estrogens in the wastewater samples from the municipal wastewater treatment plants (M-WWTPs), livestock wastewater treatment plants (L-WWTPs), hospital WWTPs (H-WWTPs) and pharmaceutical manufacture WWTPs (P-WWTPs) in Korea. The L-WWTPs showed the highest total concentration (0.195-10.4 μg L−1) of estrogens in the influents, followed by the M-WWTPs (0.028-1.15 μg L−1), H-WWTPs (0.068-0.130 μg L−1) and P-WWTPs (0.015-0.070 μg L−1). Like the influents, the L-WWTPs (0.003-0.729 μg L−1) and the M-WWTPs (0.001-0.299 μg L−1) also showed higher total concentration of estrogens in the effluents than the H-WWTPs (0.002-0.021 μg L−1) and P-WWTPs (0.011 μg L−1 in one sample). The L-WWTPs (37.5-543 μg kg−1, dry weight) showed higher total concentrations in sludge than the M-WWTPs (3.16-444 μg kg−1, dry weight) like the wastewater. The distribution of estrogens in the WWTPs may be affected by their metabolism in the human body, their transition through biological treatment processes, and their usage for livestock growth. Unlike the concentration results, the daily loads of estrogens from the M-WWTPs were the highest, which is related to the high capacities of WWTPs. 相似文献
Signal attributes should show different degrees of variability depending on the information to be conveyed. Species identity
is usually associated with stereotyped features of a signal, whereas other types of information such as individual quality
and motivation are associated with signal plasticity. Lusitanian toadfish males form aggregations during the breeding season
and emit a tonal advertisement call (the boatwhistle) to attract mates to their nests. We test the hypothesis that the boatwhistle
can convey information both on individual identity and motivation by checking how signal parameters vary with time. We study
how the physical (tide level) and social (calling alone or in a chorus) environments and male calling rate affect this advertisement
signal and how all these external and internal factors (environment, social and male motivation) blend to modulate the Lusitanian
toadfish’s advertisement call. Boatwhistles of each male were very stereotyped in short periods of time (minutes), but intra-male
signal variability greatly increased in a longer time scale (days). Nevertheless, significant differences among males could
still be found even in a long time scale. Pulse period was the acoustic feature that most contributed to discriminate among
males. Tide level and male calling rate modulated boatwhistle characteristics, and there was a differential effect of tide
on call attributes depending on male calling rate. Social acoustic environment only affected calling rate. These results suggest
that inter-individual differences in call characteristics and call plasticity may mediate both male–male assessment and mate
choice. 相似文献
Environmental exposure to arsenic (As) in terms of public health is receiving increasing attention worldwide following cases of mass contamination in different parts of the world. However, there is a scarcity of data available on As geochemistry in Brazilian territory, despite the known occurrence of As in some of the more severely polluted areas of Brazil. The purpose of this paper is to discuss existing data on As distribution in Brazil based on recent investigations in three contaminated areas as well as results from the literature. To date, integrated studies on environmental and anthropogenic sources of As contamination have been carried out only in three areas in Brazil: (1) the Southeastern region, known as the Iron Quadrangle, where As was released into the drainage systems, soils and atmosphere as a result of gold mining; (2) the Ribeira Valley, where As occurs in Pb-Zn mine wastes and naturally in As-rich rocks and soils; (3) the Amazon region, including the Santana area, where As is associated with manganese ores mined over the last 50 years. Toxicological studies revealed that the populations were not exposed to elevated levels of As, with the As concentrations in surface water in these areas rarely exceeding 10 microg/L. Deep weathering of bedrocks along with formation of Fe/Al-enriched soils and sediments function as a chemical barrier that prevents the release of As into the water. In addition, the tropical climate results in high rates of precipitation in the northern and southeastern regions and, hence, the As contents of drinking water is diluted. Severe cases of human As exposure related to non-point pollution sources have not been reported in Brazil. However, increasing awareness of the adverse health effects of As will eventually lead to a more complete picture of the distribution of As in Brazil. 相似文献
The mining, milling and processing of uranium and thorium bearing minerals may result in radiation doses to workers. A preliminary survey pilot program, that included six mines in Brazil (two coal mines, one niobium mine, one nickel mine, one gold mine and one phosphate mine), was launched in order to determine the need to control the radioactive exposure of the mine-workers. Our survey consisted of the collection and analysis of urine samples, complemented by feces and air samples. The concentrations of uranium, thorium and polonium were measured in these samples and compared to background data from family members of the workers living in the same dwelling and from residents from the general population of Rio de Janeiro. The results from the coal mines indicated that the inhalation of radon progeny may be a source of occupational exposure. The workers from the nickel, gold and phosphate mines that were visited do not require a program to control internal radiological doses. The niobium mine results showed that in some areas of the industry exposure to thorium and uranium might occur. 相似文献
Because iron is not available generally in oxygenated sea water, it may be a limiting factor in marine primary production. This hypothesis was tested in the context of Davies Reef, Latitude 18°50′S (one of the coral reefs in the central region of the Great Barrier Reef system). Samples were collected for study in the period August, 1980 to March, 1981. Sea water around the reef contained ≦2x10-6M Fe, surface sediments from the reef contained 66±26 (1 SD) ppm total Fe, and interstitial water near the surface contained ≧5x10-7M Fe. Thus, Fe constituted a trace component of the reef environment, but limited Fe should be available to algae associated with the sediments. Specific biochemical analyses to test the Fe status of benthic photosynthetic organisms were carried out with a common blue-green alga, Phormidium sp., and a ubiquitous symbiotic dinoflagellate, Gymnodinium microadriaticum (zooxanthellae). The blue-green alga contained the electron transport protein, flavodoxin, which is found only in Fe-deficient organisms. Supporting evidence for Fe stress in this organism included chlorosis in the presence of plentiful biliprotein, and very low extractable photosynthetic cytochrome, c-553. The latter observations were shown to be the result of Fe deficiency in laboratory cultures of a blue-green alga, Synechococcus sp. These cultures showed that production of flavodoxin is not a universal response of algae to Fe stress, but that lowered cellular concentrations of Fe-containing proteins involved in photosynthesis probably is universal. The zooxanthellae from a soft coral, Sinularia sp., had three-fold lower total Fe and ferredoxin (an electron transport protein), than the same alga from a clam, Tridacna maxima. Thus, some algae in symbiotic associations may also suffer Fe-deficiency. It was concluded that the degree and extent of Fe-stress in primary producers on a coral reef may influence growth rates, biomass, and distribution of species. 相似文献
Providing an accurate estimate of the dry component of N deposition to low N background, semi-natural habitats, such as bogs and upland moors dominated by Calluna vulgaris is difficult, but essential to relate nitrogen deposition to effects in these communities. To quantify the effects of NH3 inputs to moorland vegetation growing on a bog at a field scale, a field release NH3 fumigation system was established at Whim Moss (Scottish Borders) in 2002. Gaseous NH3 from a line source was released along of a 60 m transect, when meteorological conditions (wind speed >2.5 m s?1 and wind direction in the sector 180–215°) were met, thereby providing a profile of decreasing NH3 concentration with distance from the source. In a complementary study, using a NH3 flux chamber system, the relationships between NH3 concentrations and cuticular resistances were quantified for a range of NH3 concentrations and micrometeorological conditions for moorland vegetation. Cuticular resistances increased with NH3 concentration from 11 s m?1 at 3.0 μg m?3 to 30 s m?1 at 30 μg m?3. The NH3 concentration data and the concentration-dependent canopy resistance are used to calculate NH3 deposition taking into account leaf surface wetness. The implications of using an NH3 concentration-dependent cuticular resistance and the importance for refining critical loads are discussed. 相似文献
The economic viability of the split-phase glycolysis process for the recycling of any kind of flexible polyurethane foam waste employing crude glycerol as cleavage agent has been demonstrated. First, experiments at pilot plant scale were carried out to check that the process can be extrapolated to larger scales. With the goal of scaling-up the process from laboratory scale to pilot plant, geometric similarity criteria were applied together with dynamic similarity for laminar flow in agitated tank reactors. Hence, a pilot plant installation was designed with geometrically similar equipment to those used for lab scale, obtaining analogous results in terms of recovered polyol properties. Then, the basic design of a split-phase glycolysis industrial plant with a capacity for treating 270 Tm per year of flexible PU foams scraps was proposed. Finally, the economic feasibility of such recycling process was confirmed because of the obtention of a Net Present Value (NPV) of 1,464,555€, with an Internal Rate of Return (IRR) of 27.99%, and a payback time between 4 and 5 years.
The Amazonian forest is, due to its great size, carbon storage capacity and present-day variability in carbon uptake and release, an important component of the global carbon cycle. Paleo-environmental reconstruction is difficult for Amazonia due to the scarcity of primary palynological data and the mis-interpretation of some secondary data. Studies of lacustrine sediment records have shown that Amazonia has known periods in which the climate was drier than it is today. However, not all geomorphological features such as dunes, and slope erosion, which are thought to indicate rainforest regression, date from the time of the Late Glacial Maximum (LGM) and these features do not necessarily correspond to episodes of forest regression. There is also uncertainty concerning LGM carbon storage due to rainforest soils and biomass estimates. Soil carbon content may decrease moderately during the LGM, whereas rainforest biomass may change considerably in response to changes in the global environment. Biomass per unit area in Amazonia has probably been reduced by the cumulative effects of low CO2 concentration, a drier climate and lower temperatures. As few paleo-vegetation data are available, there is considerable uncertainty concerning the amount of carbon stored in Amazonia during the LGM, which may have corresponded to 44-94% of the carbon currently stored in biomass and soils. 相似文献