首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   5篇
  国内免费   1篇
安全科学   16篇
废物处理   12篇
环保管理   58篇
综合类   56篇
基础理论   84篇
环境理论   1篇
污染及防治   37篇
评价与监测   15篇
社会与环境   7篇
灾害及防治   7篇
  2023年   9篇
  2022年   4篇
  2021年   6篇
  2020年   13篇
  2019年   7篇
  2018年   12篇
  2017年   11篇
  2016年   21篇
  2015年   9篇
  2014年   17篇
  2013年   17篇
  2012年   19篇
  2011年   21篇
  2010年   18篇
  2009年   20篇
  2008年   12篇
  2007年   14篇
  2006年   11篇
  2005年   9篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   7篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有293条查询结果,搜索用时 125 毫秒
31.
The pH on the frustule of individual cells of the marine centric diatoms Coscinodiscus granii and Coscinodiscus wailesii (Bacillariophyceae) was measured with pH microsensors in culture media with increasing pH values of 8.04, 8.14, and 8.22, respectively. In 85–96% of the C. granii cells the pH on the frustule was up to 0.4 units higher than that of the medium, reaching a maximum pH 8.95. Only in 2–3% the surface pH exceeded that of the medium by up to 0.7 pH units. These results strongly suggest that diatoms in batch cultures differ, at least temporarily, in their individual photosynthetic activities. Infection experiments with the parasitoid nanoflagellate Pirsonia diadema (Stramenopile) showed that flagellates failed to infect when the culture pH was 8.8 and above. pH measurements on freshly infected C. granii showed that the prevalence of infection was higher in tendency on diatoms with low surface pH. Application of these results to parasitoid-diatom interactions in natural waters suggests that within phytoplankton populations a strong photosynthetic activity might prevent diatom cells temporarily from infection by pH-sensitive parasitoids.  相似文献   
32.
33.
Kamel SJ  Mrosovsky N 《Ecology》2006,87(11):2947-2952
Within a single population of hawksbill sea turtles (Eretmochelys imbricata), we found a behavioral polymorphism for maternal nest site choice with respect to beach microhabitat characteristics. Some females preferred to nest in littoral forest and in places with overstory vegetation cover, and others preferred to nest in more open, deforested areas. Nest site choice was consistent within and between nesting seasons two years apart. This was not a result of females simply returning to the same location along the shoreline; beach sections used by individual turtles varied between seasons. Nest site choice was not influenced by changes in beach environment (e.g., beach width and foliage cover) or by changes in females' reproductive output (e.g., clutch size), suggesting that fidelity to particular microhabitats is a major determinant of the observed nesting patterns. Because hawksbills exhibit temperature-dependent sex determination, if the behavioral polymorphism in nest site choice has a genetic basis, as is plausible, then this would have implications for sex ratio evolution and offspring survival. By taking an individual-based approach to the study of maternal behavior we reveal previously overlooked individual variation and hope to provide some impetus for more detailed studies of nest site choice.  相似文献   
34.
Objectives: Nationally, animal–motor vehicle crashes (AVCs) account for 4.4% of all types of motor vehicle crashes (MVCs). AVCs are a safety risk for drivers and animals and many National Park Service (NPS) units (e.g., national park, national monument, or national parkway) have known AVC risk factors, including rural locations and substantial animal densities. We sought to describe conditions and circumstances involving AVCs to guide traffic and wildlife management for prevention of AVCs in select NPS units.

Methods: We conducted an analysis using NPS law enforcement MVC data. An MVC is a collision involving an in-transit motor vehicle that occurred or began on a public roadway. An AVC is characterized as a collision between a motor vehicle and an animal. A non-AVC is a crash between a motor vehicle and any object other than an animal or noncollision event (e.g., rollover crash). The final data for analysis included 54,068 records from 51 NPS units during 1990–2013. Counts and proportions were calculated for categorical variables and medians and ranges were calculated for continuous variables. We used Pearson’s chi-square to compare circumstances of AVCs and non-AVCs. Data were compiled at the park regional level; NPS parks are assigned to 1 of 7 regions based on the park’s location.

Results: AVCs accounted for 10.4% (5,643 of 54,068) of all MVCs from 51 NPS units. The Northeast (2,021 of 5,643; 35.8%) and Intermountain (1,180 of 5,643; 20.9%) regions had the largest percentage of the total AVC burden. November was the peak month for AVCs across all regions (881 of 5,643; 15.6%); however, seasonality varied by park geographic regions. The highest counts of AVCs were reported during fall for the National Capital, Northeast/Southeast, and Northeast regions; winter for the Southeast region; and summer for Intermountain and Pacific West regions.

Conclusions: AVCs represent a public health and wildlife safety concern for NPS units. AVCs in select NPS units were approximately 2-fold higher than the national percentage for AVCs. The peak season for AVCs varied by NPS region. Knowledge of region-specific seasonality patterns for AVCs can help NPS staff develop mitigation strategies for use primarily during peak AVC months. Improving AVC data collection might provide NPS with a more complete understanding of risk factors and seasonal trends for specific NPS units. By collecting information concerning the animal species hit, park managers can better understand the impacts of AVC to wildlife population health.  相似文献   

35.
36.
Worldwide, invasive species are a leading driver of environmental change across terrestrial, marine, and freshwater environments and cost billions of dollars annually in ecological damages and economic losses. Resources limit invasive‐species control, and planning processes are needed to identify cost‐effective solutions. Thus, studies are increasingly considering spatially variable natural and socioeconomic assets (e.g., species persistence, recreational fishing) when planning the allocation of actions for invasive‐species management. There is a need to improve understanding of how such assets are considered in invasive‐species management. We reviewed over 1600 studies focused on management of invasive species, including flora and fauna. Eighty‐four of these studies were included in our final analysis because they focused on the prioritization of actions for invasive species management. Forty‐five percent (n = 38) of these studies were based on spatial optimization methods, and 35% (n = 13) accounted for spatially variable assets. Across all 84 optimization studies considered, 27% (n = 23) explicitly accounted for spatially variable assets. Based on our findings, we further explored the potential costs and benefits to invasive species management when spatially variable assets are explicitly considered or not. To include spatially variable assets in decision‐making processes that guide invasive‐species management there is a need to quantify environmental responses to invasive species and to enhance understanding of potential impacts of invasive species on different natural or socioeconomic assets. We suggest these gaps could be filled by systematic reviews, quantifying invasive species impacts on native species at different periods, and broadening sources and enhancing sharing of knowledge.  相似文献   
37.
Effects of benthic macrofauna (Corophium volutator, Hydrobia sp., Nereis virens) on benthic community metabolism were studied over a 65-d period in microcosms kept in either light/dark cycle (L/D-system) or in continuous darkness (D-system). Sediment and animals were collected in January 1986 in the shallow mesohaline estuary, Norsminde Fjord, Denmark. The primary production in the L/D-system after 10 d acted as a stabilizing agent on the O2 and CO2 flux rates, whereas the D-system showed decreasing O2 and CO2 flux throughout the period. Mean O2 uptake over the experimental period ranged from 0.38 to 1.24 mmol m–2 h–1 and CO2 release varied from 0.80 to 1.63 mmol m–2 h–1 in both systems. The presence of macrofauna stimulated community respiration rates measured in darknes, 1.4 to 3.0 and 0.9 to 2.0 times for O2 and CO2, respectively. In contrast, macrofauna lowered primary production. Gross primary production varied from 1.06 to 2.26 mmol O2 m–2 h–1 and from 1.26 to 2.62 mmol CO2 m–2 h–1. The community respiratory quotient (CRQ, CO2/O2) was generally higher in the begining of the experiment (0–20 d, mean 1.89) than in the period from Days 20 to 65 (mean 1.38). The L/D-system exhibited lower CRQ (ca. 1) than the D-system. The community photosynthetic quotient varied for both net and gross primary production from 0.64 to 1.03, mean 0.81. The heterotrophic D-system revealed a sharp decrease in the sediment content of chlorophyll a as compared to the initial content. In the autotrophic L/D-system, a significant increase in chlorophyll a concentration was observed in cores lacking animals and cores with C. volutator (The latter species died during the experiment). Due to grazing and other macrofauna activities other cores of the L/D-system exhibited no significant change in chlorophyll a concentration. Community primary production was linearly correlated to the chlorophyll a content in the 0 to 0.5 cm layer. Fluxes of DIN (NH4 ++NO2 +NO3 ) did not reveal significant temporal changes during the experiment. Highest rates were found for the cores containing animals, mainly because of an increased NH4 + flux. The release of DIN decreased significantly due to uptake by benthic microalgae in the L/D-system. No effects of the added macrofauna were found on particulate organic carbon (POC), particulate organic nitrogen (PON), total carbon dioxide (TCO2) and NH4 + in the sediment. The ratio between POC and PON was nearly constant (9.69) in all sediment dephts. The relationship between TCO2 and NH4 + was more complex, with ratios below 2 cm depth similar to those for POC/PON, but with low ratios (3.46) at the sediment surface.  相似文献   
38.
39.
40.
In the statistical modeling of a biological or ecological phenomenon, selecting an optimal model among a collection of candidates is a critical issue. To identify an optimal candidate model, a number of model selection criteria have been developed and investigated based on estimating Kullback’s (Information theory and statistics. Dover, Mineola, 1968) directed or symmetric divergence. Criteria that target the directed divergence include the Akaike (2nd international symposium on information theory. Akadémia Kiadó, Budapest, Hungary, pp 267–281, 1973, IEEE Trans Autom Control AC 19:716–723, 1974) information criterion, AIC, and the “corrected” Akaike information criterion (Hurvich and Tsai in Biometrika 76:297–307, 1989), AICc; criteria that target the symmetric divergence include the Kullback information criterion, KIC, and the “corrected” Kullback information criterion, KICc (Cavanaugh in Stat Probab Lett 42:333–343, 1999; Aust N Z J Stat 46:257–274, 2004). For overdispersed count data, simple modifications of AIC and AICc have been increasingly utilized: specifically, the quasi Akaike information criterion, QAIC, and its corrected version, QAICc (Lebreton et al. in Ecol Monogr 62(1):67–118 1992). In this paper, we propose analogues of QAIC and QAICc based on estimating the symmetric as opposed to the directed divergence: QKIC and QKICc. We evaluate the selection performance of AIC, AICc, QAIC, QAICc, KIC, KICc, QKIC, and QKICc in a simulation study, and illustrate their practical utility in an ecological application. In our application, we use the criteria to formulate statistical models of the tick (Dermacentor variabilis) load on a white-footed mouse (Peromyscus leucopus) in northern Missouri.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号