首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   11篇
  国内免费   48篇
安全科学   14篇
废物处理   1篇
环保管理   8篇
综合类   103篇
基础理论   14篇
污染及防治   9篇
社会与环境   4篇
灾害及防治   5篇
  2023年   5篇
  2022年   7篇
  2021年   6篇
  2020年   4篇
  2019年   18篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   10篇
  2014年   9篇
  2013年   21篇
  2012年   10篇
  2011年   14篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
排序方式: 共有158条查询结果,搜索用时 933 毫秒
111.
塑料垃圾的热解气化实验研究   总被引:1,自引:0,他引:1  
在小型外热式固定床实验台上,对塑料垃圾进行高温热解实验研究。研究主要针对不同的热解终温,目的是弄清热解过程的规律、热解温度对热解产物的影响、热解终温和产气量及气体成分的组分之间的关系。尤其研究了在热解处于末期的时候,强化水煤气反应对结果的影响。  相似文献   
112.
洱海沉积物中溶解性有机氮季节性变化   总被引:5,自引:0,他引:5  
选取洱海10个表层沉积物样品,研究不同季节DON(溶解性有机氮)和易分解组分DFAA(游离氨基酸)的含量变化. 结果表明:①洱海沉积物中w(DON)在10.41~59.58 mg/kg之间,平均值为27.43 mg/kg,约占w(TDN)(溶解性总氮质量分数)的40%,w(TN)的6%,其季节性变化呈春季>冬季>夏季>秋季的趋势,各季节洱海不同湖区均呈南部>北部>中部的特点;②洱海沉积物中w(DFAA)在4.11~9.89 mg/kg之间,平均值为5.96 mg/kg,约占w(DON)的22%,占w(TDN)的9%,季节性变化呈秋季相对较高、冬春次之、夏季相对较少的趋势,区域性变化呈南北高、中间低的特点,污染较严重的区域沉积物中w(DFAA)较高;③作为沉积物活性氮重要成分,w(DON)和w(DFAA)的季节性变化明显,对湖泊氮代谢有重要影响,在水生植物旺盛区域尤为明显. 在洱海富营养化治理中,除了TN,更应关注DON在湖泊氮循环及其富营养化中的作用.   相似文献   
113.
乌梁素海沉积物溶解性有机质荧光光谱特性   总被引:12,自引:0,他引:12       下载免费PDF全文
采用三维荧光光谱技术(3DEEM)研究了乌梁素海沉积物溶解性有机质的结构组成特征.结果表明,乌梁素海沉积物溶解性有机质出现了6种荧光峰,分别代表类蛋白荧光物质和类富里酸荧光物质,且不同湖区沉积物溶解性有机质结构组成具有一定差异性.乌梁素海沉积物DOM的荧光指数处于1.74~1.96之间,及其DOM来源具有陆源和内源的双重特性,其中陆源主要来自西部河套灌区农田退水输入,内源主要来自芦苇等大型挺水植物死亡腐烂分解.因此,控制河套灌区农田退水排入以及抑制芦苇等挺水植物大量生长是保护乌梁素海生态环境和控制其富营养化的有效措施.  相似文献   
114.
洱海表层沉积物溶解性有机氮生物有效性   总被引:3,自引:3,他引:0  
选取9个洱海表层沉积物样品,提取了DON(溶解性有机氮)进行生物矿化培养,测定了培养过程中各形态氮含量,并运用三维荧光技术研究了DON结构变化. 结果表明:①洱海沉积物中w(DON)范围为43.52~214.71mg/kg,平均值为115.19mg/kg,DON主要由类蛋白和类腐殖质类物质构成,并且以类蛋白为主;②洱海沉积物中DON生物有效性为1.21%~72.77%,平均值为33.23%,生物可利用量平均值为50.22mg/kg;DON生物有效性空间差异明显,北部和南部较高,而中部较低;③洱海生物自身产生及形成的DON主要由类酪氨酸组成,其中有小部分类腐殖质可被生物利用,这是由于类色氨酸和类酪氨酸共存可提高DON类腐殖质生物有效性. 此外,w(DON)占w(TDN)(TDN为可溶性总氮)的比例是影响DON生物有效性的重要因素,w(DON)/w(TDN)越高,类腐殖质及类酪氨酸含量越低,沉积物中DON生物有效性越高. 可见,DON对湖泊富营养化有重要影响,控制洱海富营养化,不仅需要关注沉积物中的w(TN),也应关注w(DON)及DON组成特征.   相似文献   
115.
采用2006—2010年5—10月份乌梁素海监测数据,对叶绿素a浓度的时空分布特征及其与总氮、总磷浓度相关关系进行了分析。结果表明:乌梁素海叶绿素a浓度具有明显的时空分布差异性:在时间上,呈现出明显的季节性变化,5、6、9、10月份叶绿素a浓度较高,7、8月份叶绿素a浓度偏低,秋季≈春季>夏季,最高值出现在2007年9月,均值为9.01 mg/m3,最低值出现在2010年7月,均值为1.80 mg/m3;在空间上,南北部叶绿素a浓度以7.78 mg/m3为界,呈现北部区>南部区的趋势。通过叶绿素a与总氮、总磷浓度相关性分析得出,2006年5月叶绿素a与总氮、总磷(r=0.7450、0.7596)、2008年5月叶绿素a与总磷(r=0.5421)、2010年5月叶绿素a与总氮(r=0.5089)存在较好的相关性。  相似文献   
116.
2010年洱海全湖磷负荷时空分布特征   总被引:3,自引:0,他引:3  
为探讨不同来源磷负荷对洱海水体富营养化的贡献,研究了洱海入湖河流、干湿沉降和沉积物内源释放等来源磷负荷的时空变化特征. 结果表明:2010年洱海磷负荷的主要来源是入湖河流,其所带来的磷负荷占总入湖负荷的33%. 入湖河流磷负荷与洱海水体富营养化指数呈显著正相关,并且季节性变化明显,10月是高峰期入湖河流磷负荷区域差异较大,北部3条河流是主要来源,其中以弥苴河入湖磷负荷最大,占入湖河流磷负荷总量的52%. 沉积物磷扩散通量由北向南呈下降趋势,最高值在湖心区,11月最大. 干湿沉降入湖磷负荷季节性变化明显,干沉降占干湿沉降入湖磷负荷总量的47%. 外源入湖磷负荷控制,应以雨季之初为关键时期,以弥苴河及其流域为重点区域,以坝区农业污染控制为重点,同时应加强湖泊水体生态修复控制沉积物内源磷释放.   相似文献   
117.
洱海入湖河流水体悬浮颗粒物有机碳氮来源特征   总被引:14,自引:4,他引:10  
以洱海主要入湖河流水体悬浮颗粒物为研究对象,运用稳定同位素技术,研究了不同季节、不同河流水体悬浮颗粒物中有机碳、氮的来源,探讨了其与流域环境和人类活动之间的关系. 结果表明:①入湖河流水体悬浮颗粒物δ13C的离散程度为夏季<秋季<冬季<春季,变化范围分别为-25.1‰~-16.9‰、-30.0‰~-10.7‰、-20.9‰~-11.0‰和-28.6‰~-14.4‰;δ15N的离散程度为冬季>夏季>春季>秋季,变化范围分别为-0.5‰~8.8‰、5.4‰~10.6‰、3.4‰~7.9‰和6.2‰~8.7‰. ②入湖河流水体悬浮颗粒物有机质的来源,春季以陆源C3植物和自生有机质为主,并且C3植物来源的有机质贡献呈逐渐增大趋势;夏季主要来源于陆源C3植物;秋季仍以陆源C3植物和水生植物的混合来源为主,但水生植物来源有机质比例有所上升;冬季则以陆源C3、C4植物和水生植物来源有机质混合来源为主. ③入湖河流水体悬浮颗粒物中的氮,春季主要来源于土壤流失和水生植物残体,并且土壤流失氮比例逐渐升高;夏季主要来源于土壤流失;秋季来源于土壤流失、化学肥料和水生植物死亡的共同作用;冬季来源于化学肥料、土壤流失和水生植物,并且化学肥料带来的氮比例有所上升.   相似文献   
118.
医药品环境污染及其生态效应已成为我国乃至全球所面临的重大环境问题之一.医药品残留的同步检测技术中,固相萃取结合高效液相色谱串联质谱联用技术是目前较为常用的方法.但目前国内研究较多的是单类医药品的同时检测,比如抗生素类(单类或多类)、β-受体阻断剂等,对于多类医药品同时检测的方法的研究还比较少.  相似文献   
119.
王亚  焦赳赳  陈建耀 《生态环境》2013,(12):1909-1915
珠江三角洲第四纪底部含水层当中的天异常高然铵,来自于第四纪沉积当中的有机质在厌氧条件下的矿化。珠江三角洲第四纪晚期的沉积序列,主要包括两层海相沉积层(M1和 M2),以及两层陆相沉积层(T1和 T2)。然而,截至目前,上述地层对天然铵的生成与存储作用,尚不明确。从三角洲的内陆到近岸,选取重点钻孔BJ8、SD1、SD14和MZ4,利用准确的定年数据,以及钻孔剖面各类铵以及总有机碳等数据,探讨与比较了珠江三角洲第四纪各地层生成与储存天然铵的能力。结果表明:全新世时期的海相沉积层(M1),具有高达17.4 g·kg-1的沉积有机质质量分数。对 SD14钻孔剖面上高精度的有机碳分析表明,M1、M2层平均有机质质量分数分别为11.7和10.1 g·kg-1。因此,相对于晚更新世时期的海相沉积层(M2)来说,全新世海相沉积层M1具备生成更多铵的能力。对SD14钻孔剖面上各类铵的分析表明,M1和M2总铵质量分数的平均值分别为0.41和0.31 g·kg-1;M1、M2和T2各地层单位面积所储存铵的平均值分别为28.6、11.25和0.34 kg·m-2。而不同地层铵含量的差异,在该研究关注的其他钻孔 BJ8,SD1和 MZ4也非常明显。因此得出结论,全新世海相沉积层M1,是主要的储铵层,而M2则是次要的储铵层。两个陆相沉积层T1和T2,不论在生铵和储铵的功能上,远远小于两个海相沉积层。在 M1层中,铵的量呈现随深度增加而升高的趋势,原因在于铵不断生成累积,并通过扩散作用向下运移。而M2层中铵的含量呈现由上至下递减的趋势,说明M2层中的铵主要来自于上部M1层的扩散,其本身生成铵的量比M1少。M1层在珠江三角洲广泛发育,M2层经过长期的风化和剥蚀,在珠江三角洲许多地方已缺失。珠江三角洲底部含水层中天然高铵的浓度,主要由M1层生成与存储的铵的总量所决定。  相似文献   
120.
滇池沉积物氮内源负荷特征及影响因素   总被引:3,自引:0,他引:3  
研究了滇池沉积物间隙水氮浓度垂向分布特征,根据Fick扩散定律定量估算了沉积物-水界面氮扩散通量,并探讨了其影响因素.结果表明:滇池沉积物间隙水溶解性总氮(DTN)主要以氨态氮(NH4+-N)形式存在,占其总量的72.30%,其浓度随深度增加而升高;其次为溶解性有机氮(DON),占其总量的24.59%,其浓度随深度的增加先升高后降低,最后趋于稳定;硝态氮(NO3--N)所占比例较低,浓度随深度的增加而降低.滇池沉积物-水界面NH4+-N扩散通量分布范围为12.73~59.74mg/(m2·d)[均值30.18mg/(m2·d)],全湖年均氨氮释放量为3305.04t,其中草海、外海北部、东北部及南部湖区扩散通量较大,达35mg/(m2·d),全湖呈由北向南逐渐降低的空间分布特征;全湖年均DON释放量为1147.55t,其全湖分布特征与氨氮一致;NO3--N扩散通量分布范围为-2.70~0.27mg/(m2·d)[均值-0.50mg/(m2·d)],总体表现为由上覆水向沉积物扩散.与我国其他湖泊相比,滇池具有较大沉积物氮内负荷,其沉积物-水界面NH4+-N扩散通量较高,对湖泊水体氨氮浓度贡献较大,且其与沉积物总氮、有机质、可交换态氮和可交换态氨氮含量呈显著正相关,即滇池沉积物NH4+-N释放主要受其可交换态氮,特别是可交换态中氨氮含量影响;同时,滇池沉积物DON潜在释放风险也较大,且与沉积物C/N有关.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号