首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   4篇
  国内免费   1篇
综合类   1篇
评价与监测   12篇
  2023年   4篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
排序方式: 共有13条查询结果,搜索用时 447 毫秒
11.
基于2021年12月1日-2022年2月28日合肥市细颗粒物(PM_(2.5))及其水溶性离子连续观测数据,分析了合肥市冬季PM_(2.5)中水溶性离子化学特征以及不同污染程度下水溶性离子化学特征。结果表明:采样期间合肥市PM_(2.5)污染较重,不同污染程度下PM_(2.5)浓度差异较大,中度及以上污染天的ρ(PM_(2.5))平均值分别是清洁天和轻度污染天的2.8和1.3倍。二次水溶性无机离子[硝酸根离子(NO_(3)^(-))、铵根离子(NH+4)和硫酸根离子(SO_(2)-4),简称SNA]是合肥市PM_(2.5)的重要组成部分,随着污染程度的加重,PM_(2.5)二次生成比例随之下降。NH+4是合肥市水溶性离子中中和能力最强的离子,易与NO_(3)^(-)和SO_(2)-4结合分别形成NH_(4)NO_(3)和(NH_(4))_(2)SO_(4)。合肥市SO_(2)和NO_(2)均易发生二次转化,且SO_(2)较NO_(2)更容易发生二次转化。钙离子(Ca^(2+))和镁离子(Mg^(2+))相关性较高,说明合肥市PM_(2.5)可能受扬尘影响较大;钾离子(K^(+))是生物质燃烧的指示离子,氯离子(Cl^(-))与K^(+)相关性较好,说明合肥市PM_(2.5)组分中的Cl^(-)和K^(+)主要来自生物质燃烧。PM_(2.5)中水溶性离子受降水和温度影响较大。  相似文献   
12.
综合利用环境空气质量常规监测、挥发性有机物(VOCs)在线监测,以及后向轨迹聚类分析、权重潜在源区分析和正交矩阵因子分解法等多种监测分析方法,基于合肥市经历的一次典型臭氧(O3)污染过程(2020年9月1—10日),系统分析了合肥市O3污染的典型特征及成因。结果显示,此次污染过程的O3小时平均浓度高达96 μg/m3,且O3浓度波动较大,在9月6日13:00达到了224 μg/m3,呈现出快速生成、快速消耗的污染特征,并在夜间呈现出非典型的二次峰值过程。污染期间,合肥市基本处于VOCs控制区,芳香烃对O3生成潜势的贡献最大(45.2%),其次是烷烃(31.8%)和烯烃(21.5%);污染阶段的VOCs主要来自机动车排放源(44.1%)、燃烧源(21.3%)、工业源(15.3%)、溶剂使用源(12.4%)和天然源(6.9%),累积阶段和污染阶段均受机动车尾气排放和溶剂使用的影响较大。此外,台风外围下沉气流和高温、低湿、低风速等气象条件是引发此次O3污染过程的主要外因,而合肥市周边的高污染区域则是此次O3污染过程的潜在外部源区。  相似文献   
13.
利用滁州市环境空气质量监测数据和气象观测数据,分析了滁州市O3污染基本特征,并着重分析了一次连续O3污染过程中气象因素、VOCs以及其他污染物对于O3浓度的影响。结果表明:滁州市环境空气污染类型正由"PM2.5型"向"PM2.5和O3混合型"转变,O3污染程度呈现加重趋势,污染持续时间有所拉长。9月4—9日一次连续O3污染过程中O3呈单峰状;受到光化学生成和区域传输共同影响,峰值时气温大多在30℃以上,相对湿度较小,风速大多处于小风区(WS≤1 m/s),也有部分处于风速较大区域(WS>3 m/s);VOCs/NOx比值法和O3/NOx比值法均反映此次连续O3污染为VOCs控制;体积分数较大的VOCs物种主要为烷烃,其中单个体积分数最大的物种是乙烷;烯烃是对O3生成贡献最大的关键活性组分,对O3生成潜势的贡献为53.5%,控制1-戊烯、反2-戊烯、异戊二烯、间/对二甲苯等物种可以有效控制光化学生成对此次O3污染过程的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号