Adsorptive removal of copper by activated carbon derived from modified rice husk (ACRH) was studied in the presence and absence of magnetic field (MF). The ACRH was prepared from the normal rice husk treated by NaOH solution and subsequent pyrolysis at 450 °C in the absence of oxygen. The physicochemical properties of ACRH's were determined before and after the adsorption process to delineate the adsorption mechanism. The BET analysis confirmed that the fabricated ACRH has a specific surface area of 8.244 m2/g with a mesopore to micropore ratio of 0.974. It was observed that the micropore structure gradually replaced the mesopores, and the surface area of the micropore increased (from 0.9219 to 4.1764 m2/g), and the pore diameter was also decreased from 180.381 to 46.249 Å after pyrolysis. The CHNO/S test result reveals that the carbon content was increased from 42 to 67.8% in the ACRH after pyrolysis. The batch sorption studies were performed by varying the initial adsorbate concentration, temperature, agitation speed, pH, adsorbent dose and contact time for magnetic and non-magnetic conditions to analyze the effect of the magnetic field. The univariate studies show that the maximum experimental adsorption capacity was 4.522 mg/g and 3.855 mg/g, respectively, for these two conditions (representing the magnetic impact) at 25 °C with an adsorbent dose of 2 g/L and an agitation speed of 150 rpm. It was also observed that the removal efficiency was 94.55% and 77.96% (magnetic and non-magnetic condition) at pH 7 with a concentration of 10 mg/L in 2 h. The test result on the impact of exposure time on the magnetic field suggested that the magnetic memory influenced the removal efficiency; after 40 to 60 min, the maximum removal efficiency was achieved, around 80 to 90%. The pseudo-second-order kinetic model was best fitted with the experimental data with a rate constant as 0.1749 and 0.1006 g/mg/min for these two conditions. The Temkin model delineates the adsorption isotherm suggesting the heat generated during the adsorption process is linearly abate with the coverage of the surface area of the adsorbent. The thermodynamic model confirms that the copper adsorption is spontaneous (ΔG = ? 3.91 kJ/mol and ? 6.02 kJ/mol), wherein the negative enthalpy value (ΔH = ? 36.74 kJ/mol and ? 25.74 kJ/mol) suggested that the process is exothermic irrespective of magnetic interference. The significant enhancement of copper removal was observed by incorporating the magnetic field, showing an increase in sorption capacity by 17.48% and a reduction of reaction time by 88.12%.
Environmental Science and Pollution Research - Vanadium pentoxide can be an inexpensive replacement to vanadium sulfate in synthesizing vanadium redox flow battery (VRFB) electrolytes. In this... 相似文献
Intravenous injection of barbiturates, particularly pentobarbital (5-ethyl-5-pentan-2-yl-1,3-diazinane-2,4,5-trione), is a widely used method to euthanize large animals such as horses. However, one concern with this method is the fate of pentobarbital after the disposal of the carcass. As tissues decompose, pentobarbital may leach into the soil and from there migrate to groundwater. A method using methanol extraction, solid phase concentration, and liquid chromatography (LC/MS) has been developed to measure pentobarbital in soils. Recovery of pentobarbital from soil averaged approximately 85% from different soil types including topsoil, potting soil, sand, stall sweepings, and loam. The method was capable of detecting pentobarbital levels of 0.1 ppm. A calibration curve was constructed with a linear range of 1 ppm to 100 ppm. The limit of quantification was 0.5 ppm. The rate of degradation of pentobarbital in sand, topsoil, and potting soil was measured over a 17-week period. At the end of week 17, approximately 17% of the pentobarbital remained in the sand, 19% remained in the topsoil, and 10% remained in the potting soil. While there was a significant decrease in the pentobarbital recovered from the soil, there were still detectable amounts of pentobarbital present in the soil after 17 weeks. To determine the importance of bacterial degradation, the three soil types were autoclaved before addition of pentobarbital. After autoclaving, no degradation of pentobarbital was observed in sand and one topsoil sample, while there was no difference in the degradation of pentobarbital in autoclaved potting soil versus potting soil that had not undergone autoclaving. 相似文献
Journal of Material Cycles and Waste Management - Solid waste management is one of the major problems in the twenty-first century. Utilizations of the food/Agro waste materials are crucial to... 相似文献
This paper reviews the state of knowledge on modelling air flow and concentration fields at road intersections. The first part covers the available literature from the past two decades on experimental (both field and wind tunnel) and modelling activities in order to provide insight into the physical basis of flow behaviour at a typical cross-street intersection. This is followed by a review of associated investigations of the impact of traffic-generated localised turbulence on the concentration fields due to emissions from vehicles. There is a discussion on the role of adequate characterisation of vehicle-induced turbulence in making predictions using hybrid models, combining the merits of conventional approaches with information obtained from more detailed modelling. This concludes that, despite advancements in computational techniques, there are crucial knowledge gaps affecting the parameterisations used in current models for individual exposure. This is specifically relevant to the growing impetus on walking and cycling activities on urban roads in the context of current drives for sustainable transport and healthy living. Due to inherently longer travel times involved during such trips, compared to automotive transport, pedestrians and cyclists are subjected to higher levels of exposure to emissions. Current modelling tools seem to under-predict this exposure because of limitations in their design and in the empirical parameters employed. 相似文献
At present, flood is the most significant environmental problem in the entire world. In this work, flood susceptibility (FS) analysis has been done in the Dwarkeswar River basin of Bengal basin, India. Fourteen flood causative factors extracted from different datasets like DEM, satellite images, geology, soil and rainfall data have been considered to predict FS. Three heuristic models and one statistical model fuzzy Logic (FL), frequency ratio (FR), multi-criteria decision analysis (MCDA) and logistic regression (LR) have been used. The validating datasets are used to validate these models. The result shows that 68.71%, 68.7%, 60.56% and 48.51% area of the basin is under the moderate to very high FS by the MCDA, FR, FL and LR, respectively. The ROC curve with AUC analysis has shown that the accuracy level of the LR model (AUC?=?0.916) is very much successful to predict the flood. The rest of the models like FL, MCDA and FR (AUC?=?0.893, 0.857 and 0.835, respectively) have lesser accuracy than the LR model. The elevation was the most dominating factor with coefficient value of 19.078 in preparation of the FS according to the LR model. The outcome of this study can be implemented by local and state authority to minimize the flood hazard.
The efficiency of self-manufactured activated carbon (AC) produced from oat hulls in adsorbing arsenic(V) was tested in a batch reactor. The results indicated that the adsorptive capacity of AC was affected by initial pH value, with adsorption capacity decreasing from 3.09 to 1.57 mg As g(-1) AC when the initial pH values increased from 5 to 8. A modified linear driving force model conjugated with a Langmuir isotherm was created to describe the study's kinetics. The test results show that rapid adsorption and slow adsorption exist simultaneously when AC is used to remove arsenic(V). 相似文献
Seventeen bacterial isolates were screened for the utilization of low density polyethylene (LDPE) as the sole carbon source,
out of which five potential strains were selected for the development of a consortium. In vitro biodegradation efficiency
of the consortium was studied for two differently textured forms of LDPE viz. non-poronized and poronized. Although, both the forms were acted-upon well by the consortium, but the degradation was found
to be better in the poronized form. This was substantiated by λ-max shift, FTIR spectra and simultaneous TG-DTG-DTA. The analysis
revealed the breakage and formation of chemical bonds in the polymer backbone, as a result of microbial activity. The biodegraded
samples of non-poronized and poronized LDPE exhibited similar weight losses at 400 °C (24.12% and 24.48%, respectively) as
compared to their controls (4% and 4.5% respectively), but the latter could achieve it with greater ease as reveled by its
lower heat of reactions (ΔH values). The study signifies the influence of poronization of polyethylene on its rate of biodegradation. 相似文献