首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   15篇
  国内免费   2篇
安全科学   14篇
废物处理   23篇
环保管理   131篇
综合类   39篇
基础理论   106篇
污染及防治   89篇
评价与监测   28篇
社会与环境   10篇
灾害及防治   10篇
  2023年   5篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   9篇
  2015年   12篇
  2014年   11篇
  2013年   32篇
  2012年   11篇
  2011年   19篇
  2010年   16篇
  2009年   16篇
  2008年   27篇
  2007年   26篇
  2006年   22篇
  2005年   18篇
  2004年   17篇
  2003年   20篇
  2002年   17篇
  2001年   17篇
  2000年   13篇
  1999年   9篇
  1998年   8篇
  1997年   7篇
  1996年   6篇
  1995年   11篇
  1994年   7篇
  1993年   5篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1977年   2篇
  1976年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1935年   1篇
排序方式: 共有450条查询结果,搜索用时 15 毫秒
71.
Field experiments were conducted to optimize the phytoextraction of weathered p,p'-DDE (p,p'-dichlorodiphenyldichloroethylene) by Cucurbita subspecies. The effects of two soil amendments, mycorrhizae or a biosurfactant, on p,p'-DDE accumulation was determined. Also, p,p'-DDE uptake was assessed during plant growth (12, 26, 38, and 62 d), and cultivars that accumulate weathered p,p'-DDE were intercropped with cultivars known not to have that ability. Cucurbita pepo L. ssp. pepo accumulated large amounts of the contaminant, having stem bioconcentration factors, amounts of p,p'-DDE translocated, and contaminant phytoextraction that were 14, 9.9, and 5.0 times greater than C. pepo L. ssp. ovifera (L.) D.S. Decker, respectively. During 62 d, the stem BCF (bioconcentration factor) for p,p'-DDE in subspecies pepo remained constant and the total amount of contaminant accumulated was correlated with plant biomass (r(2) = 0.86). For subspecies ovifera, the stem BCF was highest at 12 d (1.5) but decreased to 0.39 by 62 d, and p,p'-DDE removal was not correlated with plant biomass. Mycorrhizal inoculation increased p,p'-DDE accumulation by both subspecies by an average 4.4 times. For subspecies pepo, mycorrhizae increased the percentage of contaminant extracted from 0.72 to 2.1%. Biosurfactant amendment also enhanced contaminant accumulation by both subspecies, although treatment reduced subspecies ovifera biomass by 60%. The biosurfactant had no effect on the biomass of subspecies pepo, increased the average contaminant concentration by 3.6-fold, and doubled the overall amount of p,p'-DDE removed from the soil. Soil amendments that enhance the mobility of weathered persistent organic pollutants will significantly increase the amount of contaminant phytoextraction by Cucurbita pepo.  相似文献   
72.
The geographical limitations of Singapore, its restricted natural resources and voluminous municipal and industrial waste streams, make environmental management a major challenge for the island state. In an attempt to find ways to reduce importation of raw materials and the waste sent to landfill, light weight aggregates were produced from marine clay and a CaF(2)-rich semiconductor industry sludge. Aggregates were produced in a bench-scale rotary kiln with three clay/sludge loadings (90/10, 70/30 and 50/50%). All three mixtures showed good bloating behavior during firing and the ceramic pellets (1-1.5cm diameter) had densities well below that required for light-weight aggregates. In the initial tests, the pore sizes of the aggregates were in general too large resulting in high water absorption. Comparisons between the composition of the two waste products and the aggregates showed a significant loss of fluorine (40-60%) during processing; a problem which may require flue gas treatment. Leach testing showed that the formed aggregates would not pose a human or environmental hazard in terms of fluorine mobilization.  相似文献   
73.
Detailed hourly precipitation data are required for long-range modeling of dispersion and wet deposition of particulate matter and water-soluble pollutants using the CALPUFF model. In sparsely populated areas such as the north central United States, ground-based precipitation measurement stations may be too widely spaced to offer a complete and accurate spatial representation of hourly precipitation within a modeling domain. The availability of remotely sensed precipitation data by satellite and the National Weather Service array of next-generation radars (NEXRAD) deployed nationally provide an opportunity to improve on the paucity of data for these areas. Before adopting a new method of precipitation estimation in a modeling protocol, it should be compared with the ground-based precipitation measurements, which are currently relied upon for modeling purposes. This paper presents a statistical comparison between hourly precipitation measurements for the years 2006 through 2008 at 25 ground-based stations in the north central United States and radar-based precipitation measurements available from the National Center for Environmental Predictions (NCEP) as Stage IV data at the nearest grid cell to each selected precipitation station. It was found that the statistical agreement between the two methods depends strongly on whether the ground-based hourly precipitation is measured to within 0.1 in/hr or to within 0.01 in/hr. The results of the statistical comparison indicate that it would be more accurate to use gridded Stage IV precipitation data in a gridded dispersion model for a long-range simulation, than to rely on precipitation data interpolated between widely scattered rain gauges.

Implications:

The current reliance on ground-based rain gauges for precipitation events and hourly data for modeling of dispersion and wet deposition of particulate matter and water-soluble pollutants results in potentially large discontinuity in data coverage and the need to extrapolate data between monitoring stations. The use of radar-based precipitation data, which is available for the entire continental United States and nearby areas, would resolve these data gaps and provide a complete and accurate spatial representation of hourly precipitation within a large modeling domain.  相似文献   

74.
This work focused on the interactive effects of the fungicide chlorothalonil (2,3,4,6-tetrachloro-1,3-benzendicarbonitrile) and gypsum on the persistence of the soil-residual herbicide metolachlor (2-chloro-N-(6-ethyl-o-tolyl)-N-[(1RS)-2-methoxy-1-methylethyl]acetamide). Gypsum application was included due to its widespread use on peanut (Arachis hypogaea). Both agricultural grade gypsum and reagent CaSO4-2H2O were tested. A laboratory soil incubation was conducted to evaluate interactive effects. Results indicated 1.5X greater metolachlor half-life (DT50) in soil amended with chlorothalonil (37 d) as compared to control soil (25 d). The two gypsum sources alone increased metolachlor DT50 to about 32 d and with the combination of chlorothalonil and gypsum, DT50 was 50 d, 2-fold greater than the control. Chlorothalonil dissipation was rapid (DT50 < 4d). A possible explanation for metolachlor dissipation kinetics is a build-up of the chlorothalonil intermediate (4-hydroxychlorothalonil) which limited soil microbial activity and depleted glutathione S-transferase (GST) from chlorothalonil detoxification. Further information related to gypsum impacts is needed. Results confirm previous reports of chlorothalonil impeding metolachlor dissipation and showed the gypsum application extended persistence even longer. Farming practices, such as reducing metolachlor application rates, may need to be adjusted for peanut cropping systems where chlorothalonil and gypsum are used.  相似文献   
75.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   
76.
In the United States, many state and federally funded conservation programs are required to quantify the water quality benefits resulting from their efforts. The objective of this research was to evaluate the impact of conservation practices subsidized by the Oklahoma Conservation Commission on phosphorus and sediment loads to Lake Wister. Conservation practices designed to increase vegetative cover in grazed pastures were evaluated using Landsat imagery and the Soil and Water Assessment Tool (SWAT). Several vegetative indices were derived from Landsat imagery captured before and after the implementation of conservation practices. Collectively, these indicators provided an estimate of the change in vegetative soil cover attributable to conservation practices in treated fields. Field characteristics, management, and changes in vegetative cover were used in the SWAT model to simulate sediment and phosphorus losses before and after practice implementation. Overall, these conservation practices yielded a 1.9% improvement in vegetative cover and a predicted sediment load reduction of 3.5%. Changes in phosphorus load ranged from a 1.0% improvement to a 3.5% increase, depending upon initial vegetative conditions. The use of fertilizers containing phosphorus as a conservation practice in low-productivity pastures was predicted by SWAT to increase net phosphorus losses despite any improvement in vegetative cover. This combination of vegetative cover analysis and hydrologic simulation was a useful tool for evaluating the effects of conservation practices at the basin scale and may provide guidance for the selection of conservation measures subsidized in future conservation programs.  相似文献   
77.
As part of the DAPPLE programme two large scale urban tracer experiments using multiple simultaneous releases of cyclic perfluoroalkanes from fixed location point sources was performed. The receptor concentrations along with relevant meteorological parameters measured are compared with a three screening dispersion models in order to best predict the decay of pollution sources with respect to distance. It is shown here that the simple dispersion models tested here can provide a reasonable upper bound estimate of the maximum concentrations measured with an empirical model derived from field observations and wind tunnel studies providing the best estimate. An indoor receptor was also used to assess indoor concentrations and their pertinence to commonly used evacuation procedures.  相似文献   
78.
Lindstrom SM  White JR 《Chemosphere》2011,85(4):625-629
Treatment wetlands have a finite period of effective nutrient removal after which treatment efficiency declines. This is due to the accumulation of organic matter which decreases the capacity and hydraulic retention time of the wetland. We investigated four potential solutions to improve the soluble reactive P (SRP) removal of a municipal wastewater treatment wetland soil including; dry down, surface additions of alum or calcium carbonate and physical removal of the accreted organic soil under both aerobic and anaerobic water column conditions. The flux of SRP from the soil to the water column under aerobic conditions was higher for the continuously flooded controls (1.1 ± 0.4 mg P m−2 d−1), dry down (1.5 ± 0.9 mg P m−2 d−1) and CaCO3 (0.8 ± 0.7 mg P m−2 d−1) treatments while the soil removal and alum treatments were significantly lower at 0.02 ± 0.10 and −0.07 ± 0.02 mg P m−2 d−1, respectively. These results demonstrate that the two most effective management strategies at sequestering SRP were organic soil removal and alum additions. There are difficulties and costs associated with removal and disposal of soils from a treatment wetland. Therefore our findings suggest that alum addition may be the most cost effective and efficient means of increasing the sequestering of P in aging treatment wetlands experiencing reduced P removal rates. However, more research is needed to determine the longer term effects of alum buildup in the organic soil on the wetland biota, in particular, on the macrophytes and invertebrates. Since alum effectiveness is time limited, a longer term solution to P flux may favor the organic soil removal.  相似文献   
79.
The dynamics of arsenic in four paddy fields in the Bengal delta   总被引:4,自引:0,他引:4  
Irrigation with arsenic contaminated groundwater in the Bengal Delta may lead to As accumulation in the soil and rice grain. The dynamics of As concentration and speciation in paddy fields during dry season (boro) rice cultivation were investigated at 4 sites in Bangladesh and West Bengal, India. Three sites which were irrigated with high As groundwater had elevated As concentrations in the soils, showing a significant gradient from the irrigation inlet across the field. Arsenic concentration and speciation in soil pore water varied temporally and spatially; higher As concentrations were associated with an increasing percentage of arsenite, indicating a reductive mobilization. Concentrations of As in rice grain varied by 2-7 fold within individual fields and were poorly related with the soil As concentration. A field site employing alternating flooded-dry irrigation produced the lowest range of grain As concentration, suggesting a lower soil As availability caused by periodic aerobic conditions.  相似文献   
80.
ASTM E2137 (Standard Guide for Estimating Monetary Costs and Liability for Environmental Matters, or E2137) is the guidance for developing estimates of future environmental costs. E2137 provides a hierarchy of cost estimation approaches, and expresses an explicit preference for the use of probabilistic cost analysis to develop expected values for environmental costs. Dr. Ram and his colleagues have published an article (Remediation Journal, Autumn 2013) which rejects the use of EV analysis, arguing that while “good in principle” it has little practical value because it is nearly impossible to develop supportable probabilities. The E2137 principles and processes have been used for more than a decade in the context of addressing future environmental costs, yet their view of E2137 renders the standard meaningless. We conclude that the deficiency is not in the ASTM standard, and that when properly constructed, probabilistic analyses can be used to develop expected values with supportable probabilities. ©2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号