首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1260篇
  免费   14篇
  国内免费   34篇
安全科学   17篇
废物处理   62篇
环保管理   173篇
综合类   114篇
基础理论   211篇
污染及防治   436篇
评价与监测   224篇
社会与环境   68篇
灾害及防治   3篇
  2023年   38篇
  2022年   82篇
  2021年   69篇
  2020年   13篇
  2019年   26篇
  2018年   41篇
  2017年   41篇
  2016年   59篇
  2015年   27篇
  2014年   54篇
  2013年   152篇
  2012年   60篇
  2011年   74篇
  2010年   57篇
  2009年   52篇
  2008年   73篇
  2007年   51篇
  2006年   46篇
  2005年   39篇
  2004年   34篇
  2003年   29篇
  2002年   22篇
  2001年   17篇
  2000年   9篇
  1999年   10篇
  1998年   4篇
  1997年   8篇
  1996年   6篇
  1994年   3篇
  1993年   5篇
  1992年   7篇
  1991年   8篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1985年   4篇
  1983年   3篇
  1982年   8篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1972年   3篇
  1969年   6篇
  1968年   4篇
  1965年   2篇
  1959年   2篇
  1957年   3篇
  1956年   2篇
排序方式: 共有1308条查询结果,搜索用时 15 毫秒
41.
Human milk samples collected from areas having intensive cotton cultivation and sparse cotton cultivation in Punjab (India) were analysed for organochlorine insecticides. Both DDT and HCH were detected in almost all the samples analysed. The average levels of Sigma-DDT and Sigma-HCH residues in samples from cotton-growing areas were significantly higher than in those from areas where cotton is sparsely grown. Residues of Sigma-DDT mainly comprised p,p'-DDT and p,p'-DDE, while those of Sigma-HCH residues were mainly in the form of its beta-isomer. Median values of 0.52 microg g(-1) of Sigma-DDT and 0.19 microg g(-1) of Sigma-HCH in samples of human milk from cotton-growing areas of Punjab (India) were higher than those reported from most other countries in the World.  相似文献   
42.
Singh RP  Agrawal M 《Chemosphere》2007,67(11):2229-2240
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for palak (Beta vulgaris var. Allgreen H-1), a leafy vegetable and consequent heavy metal contamination, a pot experiment was conducted by mixing sewage sludge at 20% and 40% (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductance, organic carbon, total N, available P and exchangeable Na, K and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Cr, Cd, Cu, Zn and Ni concentrations of soil. Cd concentration in soil was found above the Indian permissible limit in soil at both the amendment ratios.

The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in heavy metal uptake and shoot and root concentrations of Ni, Cd, Cu, Cr, Pb and Zn in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Concentrations of Cd, Ni and Zn were more than the permissible limits of Indian standard in the edible portion of palak grown on different sewage sludge amendments ratios. Sewage sludge amendment in soil decreased root length, leaf area and root biomass of palak at both the amendment ratios, whereas shoot biomass and yield decreased significantly at 40% sludge amendment. Rate of photosynthesis, stomatal conductance and chlorophyll content decreased whereas lipid peroxidation, peroxidase activity and protein and proline contents, increased in plants grown in sewage sludge-amended soil as compared to those grown in unamended soil.

The study clearly shows that increase in heavy metal concentration in foliage of plants grown in sewage sludge-amended soil caused unfavorable changes in physiological and biochemical characteristics of plants leading to reductions in morphological characteristics, biomass accumulation and yield. The study concludes that sewage sludge amendment in soil for growing palak may not be a good option due to risk of contamination of Cd, Ni and Zn and also due to lowering of yield at higher mixing ratio.  相似文献   

43.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields.  相似文献   
44.

Boro rice, an emerging low-risk crop variety of rice, cultivated using residual or stored water after Kharif season. To enhance the quality and production of rice, potassium (K) and phosphorus (P) are the common constituents of agricultural fertilizers. However, excess application of fertilizers causes leaching of nutrients and contaminates the groundwater system. Therefore, assessment and optimization of fertilizer dose are needed for better management of fertilizers. Towards this, the present study determines the path, persistence, and mobility of K and P under the Boro rice cropping system. The experimental site consisted of four plots having Boro rice with four different fertilizer doses of nitrogen (N), P, K viz. 100%, 75%, 50%, and 25% of the recommended dose. Disturbed soil samples were analysed for K and P from pre-sown land to tillering stage at 0–5, 5–10, 10–15, 15–30, 30–45, and 45–60 cm depths. Simultaneously, K and available P were also simulated in the subsurface soil layers through the HYDRUS-1D model. The statistical comparisons were made with RMSER, E, and PBIAS between the modelled values and laboratory-measured values. Although, the results showed that all the treatments considered had agreeable simulations for both K and P, the K simulations were found to be better as compared to P simulations except for 25% where P simulations outperformed K. The simulated concentration at all doses was found most appropriate when measured for the subsurface layers (up to 45 cm), while showed an underestimation in the bottom layers (45–60 cm) of soil.

  相似文献   
45.
The results of radon activity recorded in 70 dwellings of Nurpur area, Kangra district, Himachal Pradesh, India are reported. LR-115 Type 2 films in the bare mode were exposed for four seasons of three months each covering a period of one year for the measurement of indoor radon levels. The calibration constant of 0.020 tracks cm(-2) d(-1) per Bq m(-3) has been used to express radon activity in Bq m(-3). The annual average indoor radon concentrations in 17 different villages of the area are found to vary from 168+/-46 to 429+/-71. Most of the indoor radon values lie in the range of action levels (200-600 Bq m(-3)) recommended by International Commission on Radiological Protection.  相似文献   
46.
Environmental Science and Pollution Research - The 2019 outbreak of corona virus disease began from Wuhan (China), transforming into a leading pandemic, posing an immense threat to the global...  相似文献   
47.
Environmental Science and Pollution Research - A large amount of ammonia volatilization from the agricultural system causes environmental problems and increases production costs. Conservation...  相似文献   
48.
Environmental Science and Pollution Research - The energy storage application plays a vital role in the utilization of the solar energy technologies. There are various types of the energy storage...  相似文献   
49.
Environmental Science and Pollution Research - The iron and steel industries are a vital driving force for propelling the nation’s economic growth. In 2019, to boost the economy and to...  相似文献   
50.

The level of nitrate in water has been increasing considerably all around the world due to vast application of inorganic nitrogen fertiliser and animal manure. Because of nitrate’s high solubility in water, human beings are getting exposed to it mainly through various routes including water, food etc. Various regulations have been set for nitrate (45–50 mgNO3?/L) in drinking water to protect health of the infants from the methemoglobinemia, birth defects, thyroid disease, risk of specific cancers, i.e. colorectal, breast and bladder cancer caused due to nitrate poisoning. Different methods like ion exchange, adsorption, biological denitrification etc. have the ability to eliminate the nitrate from the aqueous medium. However, adsorption process got preference over the other approaches because of its simple design and satisfactory results especially with surface modified adsorbents or with mineral-based adsorbents. Different types of adsorbents have been used for this purpose; however, adsorbents derived from the biomass wastes have great adsorption capacities for nitrate such as tea waste-based adsorbents (136.43 mg/g), carbon nanotube (142.86 mg/g), chitosan beads (104 mg/g) and cetyltrimethylammonium bromide modified rice husk (278 mg/g). Therefore, a thorough literature survey has been carried out to formulate this review paper to understand various sources of nitrate pollution, route of exposure to the human beings, ill effects along with discussing the key developments as well as the new advancements reported in procuring low-cost efficient adsorbents for water purification.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号