Heavy metal(loid) extraction from soils in overlapped areas of farmland and coal resources (OAFCR) is crucial in understanding heavy metal bioavailability in soil and the subsequent risks to crops and consumers. However, limited attention has been paid to the extraction procedure of heavy metal(loid)s in OAFCR soils in the research. This study therefore explored different single and mixed extraction procedures, such as acetic acid (HOAc), citric acid, ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA), ethylene diamine tetraacetic acid + ammonium acetate (EDTA+NH4OAc), and total digestion (HNO3-HClO4-HF) to determine the bioavailability of As, Cd, Cr, Cu, Pb, and Zn in OAFCR soil in Xuzhou, China. The results showed the metal(loid) extraction capacity from soil of the different procedures could be ranked as AB-DTPA > EDTA+NH4OAc > HOAC > citric acid. The transfer ability of heavy metal(loid)s from soil to wheat tissues and from wheat roots to aerial parts was analyzed by calculating the bioconcentration factor and transfer factor, respectively. Transfer factors of all metal(loid)s were < 1 except Cr whose transfer factor from root to shell and straw were > 1. It is suspected that foliar uptake plays a dominant role in Cr uptake. Correlation analysis between the bioavailability of heavy metal(loid)s in soil and uptake in respective wheat tissues was performed to recommend the best extraction procedures for different studies. The results show that AB-DTPA extraction is recommended for Cu uptake to wheat roots, straws, shells and grains, Zn uptake to roots, and Cd uptake to roots and straws.
Environmental Science and Pollution Research - Photocatalytic oxidation of formaldehyde (HCHO) is considered as one of the promising ways to resolve indoor air HCHO pollution. TiO2 has been well... 相似文献
Environmental Science and Pollution Research - Overweight/obesity modified the effects of ambient particulate matter (PM) exposure on blood pressure (BP). This study aims to assess whether... 相似文献
Industrial wastewater is the largest contributor of toxic pollutants and third-largest contributor of nutrients to bodies of water in China, and understanding the characteristics of such pollution is important for water pollution control. In this study, the industrial gray water footprint (GWF) of each industry sector in China’s 31 provinces in 2015 was calculated to identify the pollution characteristics of industrial wastewater discharge and determine how to efficiently allocate investment to pollution reduction. We show that the total industrial GWF of China was 300 billion m3 in 2015 and that the major pollutants were petroleum pollutant (PP), ammonia nitrogen (NH3-N), volatile phenol (VP), and chemical oxygen demand (COD). The water pollution level (WPL) was higher than 1 in Ningxia, Shanxi, Hebei, Tianjin, Shanghai, Henan, and Shandong, indicating that industrial pollution exceeded the carrying capacity of local water bodies in these seven regions. Given equivalent total investment, a scenario that takes the total reduction of the industrial GWF weighted by the WPL in each region as the investment target can better allocate funds to control industrial wastewater pollution in regions with high WPLs relative to a scenario in which investment targets the reduction of the unweighted total industrial GWF. For further industrial GWF reduction in regions with high WPLs, it is crucial to adjust the industrial structure and to upgrade relevant technologies.
Environmental Science and Pollution Research - The feasibility and performance of Jicama peroxidase (JP) immobilized Buckypaper/polyvinyl alcohol (BP/PVA) membrane for methylene blue (MB) dye... 相似文献
Social insect colonies need to explore and exploit multiple food sources simultaneously and efficiently. At the individual
level, this colony-level behaviour has been thought to be taken care of by two types of individual: scouts that independently
search for food, and recruits that are directed by nest mates to a food source. However, recent analyses show that this strict
division of labour between scouts and recruits is untenable. Therefore, a modified concept is presented here that comprises
the possible behavioural states of an individual forager (novice forager, scout, recruit, employed forager, unemployed experienced
forager, inspector and reactivated forager) and the transitions between them. The available empirical data are reviewed in
the light of both the old and the new concept, and probabilities for the different transitions are derived for the case of
the honey-bee. The modified concept distinguishes three types of foragers that may be involved in the exploration behaviour
of the colony: novice bees that become scouts, unemployed experienced bees that scout, and lost recruits, i.e. bees that discover
a food source other than the one to which they were directed to by their nest mates. An advantage of the modified concept
is that it allows for a better comparison of studies investigating the different roles performed by social insect foragers
during their individual foraging histories.
Received: 29 December 1999 / Revised: 25 February 2000 / Accepted: 16 October 2000 相似文献
IMPLICATIONS: During the production of penicillin, a mass of waste bacterial residue is generated. In the past, the bacterial residues have been used for food additives. Unfortunately, doubts of their suitability as a feedstock have been raised because of the small amount of antibiotics and the degradation products remaining in the bacterial residues. So, penicillin bacterial residue is one of the hazardous wastes. Therefore, penicillin bacterial residue should be managed in accordance with the hazardous waste. To get a right method, the penicillin bacterial residue was characterized. 相似文献
The aim of the present study was to analytically provide adsorption characteristics of Cu2+ and Zn2+ using carbonized food waste (CFW); more specifically, batch tests were conducted using various concentrations of metal ions, contact times, and initial pH levels in an attempt to understand the adsorption removal of heavy metal ions in aqueous solution at concentrations ranging between 50 and 800 mg/l. The results confirmed that the adsorption equilibrium was established within a maximum of 80 min, and the maximum concentrations for adsorption of Cu2+ and Zn2+ were 28.3 and 23.5 mg/g, respectively. These adsorption levels indicate that CFW has better performance than many other adsorbents. In experiments using different pH conditions, the applicability to acid wastewater was found to be high, and an excellent adsorption removal ratio of 75%–90% was observed under acid conditions at pH 2–4. Furthermore, as the adsorption time increased, the calcium component in the CFW began to leach into the aqueous solution and raise the pH, accordingly causing the removal of heavy metal ions partially as a result of precipitation. When our results were analyzed using the Langmuir model and the Freundlich model for isothermal adsorptivity, the activity of CFW in this study was shown to be more consistent with the former; the adsorption speed of Cu2+ and Zn2+ according to a pseudosecond-order reaction model was found to be very fast for an initial concentration of not more than 100 mg/l. In a test in which an attempt was made to compare adsorption capacity values obtained from the experiments in this study with the aforementioned three models, the pseudosecond-order reaction model was found to provide results closest to the actual values. 相似文献