首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1978篇
  免费   100篇
  国内免费   699篇
安全科学   161篇
废物处理   118篇
环保管理   156篇
综合类   1085篇
基础理论   363篇
污染及防治   646篇
评价与监测   69篇
社会与环境   72篇
灾害及防治   107篇
  2024年   1篇
  2023年   46篇
  2022年   106篇
  2021年   88篇
  2020年   70篇
  2019年   55篇
  2018年   77篇
  2017年   90篇
  2016年   91篇
  2015年   128篇
  2014年   156篇
  2013年   195篇
  2012年   163篇
  2011年   225篇
  2010年   153篇
  2009年   121篇
  2008年   125篇
  2007年   105篇
  2006年   95篇
  2005年   95篇
  2004年   69篇
  2003年   69篇
  2002年   57篇
  2001年   50篇
  2000年   52篇
  1999年   63篇
  1998年   50篇
  1997年   34篇
  1996年   28篇
  1995年   41篇
  1994年   27篇
  1993年   20篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1984年   1篇
  1982年   1篇
排序方式: 共有2777条查询结果,搜索用时 140 毫秒
151.
分析了应用亚甲基蓝分光光度(GB/T16489-1996)测定废水硫化物测试过程中不确定度影响因素,主要来源为硫化物标准溶液、标准曲线拟合、随机效应、分光光度计和取样体积这五部分。本测量合成相对标准不确定度0.025 9;其中由测定样品质量引入的不确定度为0.024 7;由样品体积引入的不确定度为0.007 7。本次废水中硫化物测量结果为:0.110±0.006 mg/L,k=2(包含概率约为95%)。  相似文献   
152.
氟磺隆水解动力学研究   总被引:1,自引:0,他引:1  
采用试验室内模拟试验的方法,研究不同pH的缓冲溶液和不同自然水体对氟磺隆水解的影响。实验结果表明,不同pH缓冲溶液和不同自然水体对氟磺隆水解速率均有不同程度的影响。在碱性条件下氟磺隆的水解速率最快,半衰期为0.2 d,酸性条件下次之,半衰期为6.0 d,在中性条件下水解较慢,半衰期为15.7 d,而在不同自然水体中氟磺隆的降解速率为:伊通河水稻田水青湖水蒸馏水。  相似文献   
153.
南京雾霾天气原因分析及应对措施研究   总被引:1,自引:0,他引:1  
近年来雾霾天气开始成为一种重要的城市气象灾害,城市雾霾的形成有多方面的原因,对雾霾的治理也有多方面的举措。2013年12月江苏地区出现的雾霾事件是现阶段人们关注的焦点。本文通过对南京此次雾霾事件的回顾,从雾霾溯源、南京的应对及评述两个方面入手。对人们关注的这一热议话题进行探讨,总结出应对雾霾的一些经验和有力举措,以提供应对城市雾霾事件的参考。  相似文献   
154.
Alkali-catalyzed methanolysis and hydrolysis of polycarbonate (PC) in a solvent in which PC can substantially dissolve such as N-methyl-2-pyrrolidone, 1,4-dioxane, tetrahydrofuran and so on were studied. Reaction conditions were optimized for the purpose of recycling PC in the form of bisphenol A and carbon carbonate. The results showed that both the methanolysis and hydrolysis of PC could take place under moderate conditions. Under the conditions of reaction temperature 40 °C, m(PC):m(MeOH) = 1:1, m(PC):m(NaOH) = 50:1, reaction time 35 min and using tetrahydrofuran as solvent, the methanolysis conversion of PC was almost 100% and the yield of bisphenol A was over 95%. Moreover, under the conditions of reaction temperature 100 °C, m(PC):m(H2O) = 1:0.7, m(PC):m(NaOH) = 10:1, reaction time 8 h and using 1,4-dioxane as solvent, the hydrolysis conversion of PC was almost 100% and the yield of bisphenol A was over 94%.  相似文献   
155.
建立了利用组合单标多点校正和英蓝超滤单元的离子色谱法测定地表水中F-、C1-、NO3-、S0424—4-种离子的方法,方法操作简便,灵敏度高,线性范围广,抗干扰能力强,可同时快速测定不同数量级浓度的离子,降低了配置标准品和样品前处理的复杂性,减少了因前处理带来的干扰。  相似文献   
156.
城市基本生态控制线划定范围研究   总被引:2,自引:0,他引:2  
结合景观生态学原理,将城市基本生态控制线分解为基本农田控制线,河流与湿地控制线,林地控制线,山体控制线,海岸、沙滩控制线,针对每个景观生态要素控制线,通过定性、定量分析,分别提出划定依据、原则或方法。  相似文献   
157.
158.
159.
Quinestrol has shown potential for use in the fertility control of the plateau pika population of the Qinghai–Tibet Plateau. However, the environmental safety and fate of this compound are still obscure. Our study investigated degradation of quinestrol in a local soil and aquatic system for the first time. The results indicate that the degradation of quinestrol follows first-order kinetics in both soil and water, with a dissipation half-life of approximately 16.0 days in local soil. Microbial activity heavily influenced the degradation of quinestrol, with 41.2 % removal in non-sterile soil comparing to 4.8 % removal in sterile soil after incubation of 10 days. The half-lives in neutral water (pH 7.4) were 0.75 h when exposed to UV light (λ?=?365 nm) whereas they became 2.63 h when exposed to visible light (λ?>?400 nm). Acidic conditions facilitated quinestrol degradation in water with shorter half-lives of 1.04 and 1.47 h in pH 4.0 and pH 5.0 solutions, respectively. Moreover, both the soil and water treatment systems efficiently eliminated the estrogenic activity of quinestrol. Results presented herein clarify the complete degradation of quinestrol in a relatively short time. The ecological and environmental safety of this compound needs further investigation.  相似文献   
160.
根据国家环保总局发布的"高污染、高环境风险"产品名录(2009年),无机盐产品高氯酸钾属于高环境风险的产品,其生产存在较大风险。高氯酸钾项目在生产过程中的环境风险主要来源于强酸、强碱、有毒有害、易燃易爆等原辅材料、产品,运输、贮存和使用过程产生的燃爆、泄漏、贮运风险以及工艺废气治理措施失效等环节。识别项目产生的环境风险主要包括爆炸风险、泄漏风险、危险化学品贮运风险及氯气直排风险,并从生产管理、生产工艺及贮运等方面提出相应的防范措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号