首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1006篇
  免费   191篇
  国内免费   366篇
安全科学   166篇
废物处理   10篇
环保管理   70篇
综合类   892篇
基础理论   149篇
污染及防治   41篇
评价与监测   54篇
社会与环境   135篇
灾害及防治   46篇
  2024年   11篇
  2023年   31篇
  2022年   78篇
  2021年   80篇
  2020年   115篇
  2019年   77篇
  2018年   57篇
  2017年   54篇
  2016年   59篇
  2015年   70篇
  2014年   72篇
  2013年   74篇
  2012年   106篇
  2011年   114篇
  2010年   94篇
  2009年   72篇
  2008年   82篇
  2007年   69篇
  2006年   65篇
  2005年   48篇
  2004年   58篇
  2003年   18篇
  2002年   15篇
  2001年   18篇
  2000年   9篇
  1999年   3篇
  1998年   2篇
  1997年   8篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有1563条查询结果,搜索用时 31 毫秒
991.
北京市冬季灰霾期NMHCs空间分布特征研究   总被引:4,自引:4,他引:0  
2005年冬季一个典型灰霾期,在北京市城区和郊区选择了6个代表性采样点(北四环、天安门、苹果园、垡头、首都机场和密云)同时采集并分析了非甲烷烃(NMHCs)和NO x样品.采样期间NMHCs污染水平从高到低依次是:北四环(1 101.29μg·m-3)>垡头(692.40μg·m-3)>天安门(653.28μg·m-3)>苹果园(370.27μg·m-3)>首都机场(350.36μg·m-3)>密云(199.97μg·m-3),采样期北京大气苯污染较严重.北京市城区采样点NMHCs/NO x(2.1~6.3)指示采样期北京市大气臭氧峰值浓度受挥发性有机污染物(VOCs)控制;丙烯等效浓度和臭氧生成潜势均显示,NMHCs的反应性从高到低的次序为:北四环>垡头>天安门>苹果园>首都机场>密云.苯/甲苯比值(0.52~0.76)表明北京冬季除机动车污染外,还存在煤燃烧等其它排放源的影响;异戊烯的区域变化特征表明,北京市冬季异戊烯的人为源有所增加而植物排放减少;丙烷和丁烷浓度的区域变化表明,北京存在城区液化石油气排放.  相似文献   
992.
周桂花  肖峰  肖萍  王东升  段晋明  石健  臧莉 《环境科学》2013,34(10):3945-3953
为增强膜的亲水性,提高抗污染能力,采用原子转移自由基反应(ATRP),将甲基丙烯酸羟乙酯(HEMA)接枝到聚偏氟乙烯(PVDF)膜表面;再以硝酸铈铵(CAN)为引发剂,N,N’-亚甲基双丙烯酰胺(MBAA)为交联剂,通过自由基聚合反应将两性离子单体3-(甲基丙烯酰胺基)丙基-二甲基(3-硫代丙基)氢氧化铵内盐(MPDSAH)成功接枝到膜表面.采用全反射红外光谱仪(ATR-FTIR)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)以及接触角测定仪分析了改性前后膜表面性质及结构形态变化.随接枝时间的增加,接枝密度(GD)逐渐升高,膜孔径变小,孔隙率降低,但同时膜表面亲水性明显增强.通过牛血清蛋白(BSA)吸附及过滤实验,检验PVDF膜改性前后的抗污染性能.随着GD的增加,在高浓度BSA溶液中膜表面吸附量明显减少.当GD为288.340μg·cm-2时,膜表面接触角(CA)降低最多,由原膜的77.2°降至41.7°,且在5 s内降为0,通量恢复率高达94.961%.因此,最佳接枝时间为2 h,此时接枝密度288.340μg·cm-2则是最佳接枝密度.  相似文献   
993.
广州秋季灰霾污染过程大气颗粒物有机酸的污染特征   总被引:11,自引:8,他引:3  
收集广州秋季一个灰霾过程大气颗粒物昼夜样品,进行了26种脂肪酸和8种二元羧酸的定量分析(GC/MS).结果表明,大气脂肪酸和二元羧酸的污染水平较高.灰霾与非灰霾期间脂肪酸和二元羧酸浓度之比分别为1.9和2.5.污染上升过程脂肪酸和二元羧酸晚上浓度(653 ng.m-3)高于白天浓度(487 ng.m-3),而在污染降低过程,白天脂肪酸和二元羧酸浓度(412 ng.m-3)要高于晚上浓度(336 ng.m-3).采样期间二元羧酸和脂肪酸日均值浓度总体上与颗粒物和碳质组分的变化趋势一致.脂肪酸和二元羧酸与有机碳比值大体上与颗粒物污染成反比,比值随着大气颗粒物的增加而降低,27号晚上之后,随着颗粒物的降低而开始增加,说明有机酸主要以直接排放为主,而灰霾对有机酸的富集有明显抑制作用.基于特征比值法(C3/C4)及相关性分析,表明秋季灰霾污染过程脂肪酸和二元羧酸都是以一次排放为主.  相似文献   
994.
内蒙古温带草原氮沉降的观测研究   总被引:10,自引:5,他引:5  
张菊  康荣华  赵斌  黄永梅  叶芝祥  段雷 《环境科学》2013,34(9):3552-3556
在内蒙古太仆寺旗对温带草原地区的氮沉降进行了为期1 a(2011年11月~2012年10月)的观测.在线分析大气NH3和NO2浓度,用CMAQ模型计算的干沉降速率计算了气体干沉降量;采集降水、降尘和穿透雨样品并测定NH4+和NO3-浓度,分别得到湿沉降、颗粒物干沉降和穿透雨沉降量.观测结果表明该地区的氮沉降量已经高达3.43 g.(m2.a)-1,有可能对草原生态系统产生危害.其中,湿沉降占44%,气体干沉降占38%,颗粒物干沉降占18%.干沉降对氮沉降的贡献大于湿沉降,必需重视干沉降的测定,而穿透雨沉降明显小于总沉降,说明穿透雨法不适合于草原地区.从组分上看,还原态氮(包括NH4+和NH3)对氮沉降的贡献为71%,而氧化态氮(NO3-和NO2)的贡献仅29%,因此在控制氮沉降时,不应只针对NOx排放进行削减,NH3减排同样重要.  相似文献   
995.
地源热泵地埋管换热器的换热性能直接决定着整个系统性能的优良与否,它与地层岩性、水文地质条件、钻孔回填材料的性能、钻孔直径、孔深以及埋管直径等诸多因素有关.合理地确定地埋管间距,不仅可以增强换热效果,还可以减小换热器相互之间的热干扰,从而提高地源热泵系统的整体性能.本文在延长加热时间的热响应试验基础上,通过在土壤中布设大量的地温传感器来研究其热扩散半径,并采用数值模拟技术获取了热扩散半径的变化规律,以为地源热泵系统地埋管间距的合理确定提供指导.  相似文献   
996.
通过对2012年国内外炼化企业发生的273起非计划停工事件的分析,可以发现:企业规模大的石化公司和炼化主要装置非计划停工起数多,非计划停工的主要原因是设备故障、电网停电和工艺问题。提出了建立设备完整性管理体系、加强员工培训、加强设备预防性检维修工作和加强电网监测的对策。  相似文献   
997.
利用CDOM吸收系数估算太湖水体表层DOC浓度   总被引:14,自引:6,他引:8  
姜广甲  马荣华  段洪涛 《环境科学》2012,33(7):2235-2243
溶解有机碳(DOC)是水体中最大的有机碳库,在水体碳循环中起着重要作用.有色溶解有机物(CDOM)是DOC的重要组成部分,其吸光作用改变着水下光场结构,是水色遥感监测的重要因子之一,建立两者的联系为利用遥感技术估算湖泊水体表层DOC浓度提供有效的技术方法.基于2010年5月、2011年1月、2011年3月和2011年5月的太湖4期实验数据(183个采样点),利用CDOM特征波长吸收系数[ag(250)和ag(365)]建立多元线性模型估算太湖水体DOC浓度,同时利用2011年8月29日~9月2日的数据(n=27)对模型进行验证评价,并构建了湖泊水体DOC浓度的遥感反演模式.结果表明,该模型能够有效估算太湖水体的DOC浓度;2011年1月DOC和CDOM的源和汇有较大差异,估算效果较差;其他3期数据的模型估算效果显著(R2=0.64,RMSE=14.31%,n=164),并在201108期数据中得到了验证(R2=0.67,RMSE=10.58%,n=27).模型形式虽具有一定的通用性,但系数在不同的水域中有所差异,模型系数的区域化成为下一步研究的重点.  相似文献   
998.
Air quality monitoring is effective for timely understanding of the current air quality status of a region or city. Currently, the huge volume of environmental monitoring data, which has reasonable real-time performance, provides strong support for in-depth analysis of air pollution characteristics and causes. However, in the era of big data, to meet current demands for fine management of the atmospheric environment, it is important to explore the characteristics and causes of air pollution from multiple aspects for comprehensive and scientific evaluation of air quality. This study reviewed and summarized air quality evaluation methods on the basis of environmental monitoring data statistics during the 13th Five-Year Plan period, and evaluated the level of air pollution in the Beijing–Tianjin–Hebei region and its surrounding areas (i.e., the “2+26” region) during the period of the three-year action plan to fight air pollution. We suggest that air quality should be comprehensively, deeply, and scientifically evaluated from the aspects of air pollution characteristics, causes, and influences of meteorological conditions and anthropogenic emissions. It is also suggested that a three-year moving average be introduced as one of the evaluation indexes of long-term change of pollutants. Additionally, both temporal and spatial differences should be considered when removing confounding meteorological factors.  相似文献   
999.
微塑料和重金属复合污染对植物生长和根际微生物群落和功能的影响目前尚未清晰.以狼尾草为实验材料进行盆栽模拟试验,研究重金属镉(Cd)与不同种类MPs (PE、PS)、粒径(13 μm和550 μm)、质量分数(0.1%和1%)的微塑料复合污染对狼尾草生长、重金属积累和根际微生物群落功能的影响.结果表明,MPs和Cd复合污染条件下整体呈现对植物生长胁迫增加、Cd含量和积累量降低的趋势.MPs和Cd复合污染能改变细菌群落组成,降低细菌多样性,其中550 μm 0.1% PE+Cd处理组ACE指数和Chao1指数降低最显著.与单一Cd污染相比,不同MPs种类、质量分数和粒径的MPs添加能改变新陈代谢、氨基酸的转运和代谢、能量生成和转换等功能组的基因丰度,显著影响狼尾草根际土壤细菌的功能.研究采用宏基因组学的方法分析了MPs和Cd复合污染对狼尾草根际细菌群落和功能的影响,可为MPs重金属复合污染的生态毒理效应及其生物修复提供基础数据和科学依据.  相似文献   
1000.
以黄河流域内蒙古段为研究区,于2021年7月(丰水季)和10月(枯水季)采集降水、黄河干流、黄河支流与季节性河流、乌梁素海、哈素海、岱海、灌区渠系和地下水等水样,测试不同类型水体的水化学组成和氢氧同位素值.综合运用Piper三线图、Gibbs图、离子比例和MixSIAR混合模型等研究方法,分析了黄河流域内蒙古段水化学演变规律,并揭示降水、地表水和地下水的转化关系.结果表明,研究区地下水和地表水均偏弱碱性,水体中优势阴离子为Cl-,优势阳离子为Na+,地表水水化学类型以Cl ·SO4-Na ·Mg和SO4 ·HCO3-Na ·Mg为主,地下水水化学类型以Cl ·SO4-Na ·Mg和SO4 ·HCO3-Na ·Ca.地下水Ca2+和Mg2+主要来源于硅酸盐和蒸发岩的溶解,地表水Ca2+和Mg2+主要源于碳酸盐岩溶解,且水中碳酸和硫酸参与了碳酸盐矿物和硫化矿物溶解的过程,不同水体Na+和Cl-均受人为污染源的影响.受季节效应影响,地表水和地下水δD和δ18 O丰水期较枯水期高,研究表明,地表水在接受大气降水补给后受到了蒸发分馏作用的影响,地下水补给源复杂.MixSIAR模型揭示出,研究区地表水是地下水的主要补给来源,占总补给量的52.4%~62.2%,大气降水是地表水的主要补给来源,占总补给量的85.4%~97.1%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号