首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   4篇
  国内免费   8篇
安全科学   5篇
废物处理   21篇
环保管理   30篇
综合类   32篇
基础理论   37篇
环境理论   1篇
污染及防治   87篇
评价与监测   26篇
社会与环境   10篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   12篇
  2017年   6篇
  2016年   8篇
  2015年   14篇
  2014年   14篇
  2013年   22篇
  2012年   18篇
  2011年   15篇
  2010年   9篇
  2009年   8篇
  2008年   14篇
  2007年   9篇
  2006年   13篇
  2005年   17篇
  2004年   9篇
  2003年   7篇
  2002年   11篇
  2001年   3篇
  2000年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1970年   1篇
排序方式: 共有249条查询结果,搜索用时 281 毫秒
101.
The shortage of waste landfill space for waste disposal and the high demand for fill materials for land reclamation projects in Singapore have prompted a study on the feasibility of using spent copper slag as fill material in land reclamation. The physical and geotechnical properties of the spent copper slag were first assessed by laboratory tests, including hydraulic conductivity and shear strength tests. The physical and geotechnical properties were compared with those of conventional fill materials such as sands. The potential environmental impacts associated with the use of the spent copper slag for land reclamation were also evaluated by conducting laboratory tests including pH and Eh measurements, batch-leaching tests, acid neutralization capacity determination, and monitoring of long-term dissolution of the material. The spent copper slag was slightly alkaline, with pH 8.4 at a solid : water ratio of 1 : 1. The batch-leaching test results show that the concentrations of the regulated heavy metals leached from the material at pH 5.0 were significantly lower than the maximum concentrations for their toxicity limits referred by US EPA's Toxicity Characteristic Leaching Procedure (TCLP). It was also found that the material is unlikely to cause significant change in the redox condition of the subsurface environment over a long-term period. In terms of physical and geotechnical properties, the spent copper slag is a good fill material. In general, the spent copper slag is suitable to be used as a fill material for land reclamation.  相似文献   
102.
This study was conducted to: (1) assess the role of wetland vegetation in the removal of oxygen demand and nitrogen under tropical conditions, (2) estimate the uptake of nitrogen and copper by wetland plants and (3) investigate the speciation of Cu in wetland media among four operationally defined host fractions, namely exchangeable, carbonate, reducible and organically bound. Four laboratory-scale wetland units, two free-water-surface (FWS) and two subsurface-flow (SF) with one of each planted with cattails (Typha augustifolia), were fed with primary-treated sewage and operated at nominal retention times of 0.6-7 days. The influent and effluent BOD/COD and nitrogen concentrations were monitored to assess the performance of the wetland units for various mass loading rates. At the end of the study, all cattail plants were harvested and analyzed for total Kjeldahl nitrogen (TKN). Four other wetland units, which were identical to the first four, were fed with domestic wastewater spiked with copper in increasing concentrations. Copper speciation patterns in the sand layer were determined at the end of the study. The results showed that wetland vegetation did not play an important role in oxygen demand removal but were capable of removing about 22% and 26% of the nitrogen input in the FWS and SF wetland units, respectively. Mass balance analysis indicated that less than 1% of copper introduced was taken up by the cattails. Copper speciation patterns in the sand media showed that the exchangeable fraction contributed 30-57% and 63-80% of the nonresidual copper in the planted and unplanted FWS wetlands, respectively. For SF units, the percentages were 52-62% and 59-67%, respectively. This indicates that large amount of copper in the media were potentially remobilizable.  相似文献   
103.
An agent-based model was used to evaluate the response of a two-species fish community to fishing boat exploration strategies, namely: boats following high-yield boats (Cartesian); boats fishing at random sites (stochast-random); and boats fishing at least exploited sites (stochast-pressure). At low fishing pressure, the stochast-random mode yielded a high average catch per boat while sustaining fish biomass. At high fishing pressure, the Cartesian mode was more effective. For the Cartesian strategy, fish biomass exhibited four distinct behaviors with increasing number of boats. In the first phase, the fish biomass dropped with increasing number of boats due to a corresponding rise in biomass extraction. Rapid exploitation occurred in the second phase, when two or more boats occupied the same initial area, that led to the faster abandonment of those sites which then underwent biomass recovery. In the third phase, adding more boats resulted in a fluctuating stock biomass, where the combined effects of initial spatial distribution of boats and rapid localization led to either full stock recovery when boats were eventually confined to a single location due to spillovers, or stock extirpation when the entire area became fully occupied. Beyond the third phase, stock extirpation was assured. In order to break the pattern of localization (bandwagon effect), we introduced stochast-random intruders in a Cartesian-dominated fishery. Adding a single intruder changed the patchy-structured stock biomass pattern of a purely Cartesian fishery to a uniformly explored stock biomass pattern because of the additional spatial information provided by the intruder. Consequently, the average catch per boat increased but at the expense of a disproportionate decline in equilibrium biomass.  相似文献   
104.
A study was undertaken for the prediction of runoff flow from 0.8 ha field-sized agricultural watershed in South Korea using Soil and Water Assessment Tool (SWAT) sub-daily. The SWAT model with sub-daily configuration predicted flow from the watershed within the range of acceptable accuracy. The SWAT sub-daily simulations were carried out for a total of 18 rainfall events, 9 each for calibration and validation. Overall trend and extent of matching simulated flow for the rainfall events in 2007-2008 with measured data during the calibration process were coefficient of determination (R2) value of 0.88 and Nash and Sutcliffe Efficiency (ENS) value of 0.88. For validation, R2 and ENS values were 0.9 and 0.84, respectively. Whereas R2 and ENS values for simulation results using daily rainfall data were 0.79 and -0.01, respectively, that were observed to be out of acceptable limits for the model simulation. The importance of higher time resolution (hourly) precipitation records for flow simulation were evaluated by comparing R2 and ENS with 15 min, 2 h, 6 h and 12 h precipitation data, which resulted in lower statistics with increases in time resolution of precipitation data. The SWAT sub-daily sensitivity analysis was performed with the consideration of hydraulic parameter and was found as in the rank order of CN2 (curve number), ESCO (soil evaporation compensation factor), GW_DELAY (ground water delay time), ALPHA_BF ( base flow alpha factor), GWQMN ( a threshold minimum depth of water in the shallow aquifer required for return flow to occur) , REVAPMN (minimum depth of water in shallow aquifer for re-evaporation to occur) , LAT_TIME (lateral flow travel time) respectively. These sensitive parameters were evaluated at 10% higher and lower values of the parameters, corresponding to 70.5% higher and 23.2% lower in simulated flow out from the SWAT model. From the results obtained in this study, hourly precipitation record for SWAT sub-daily with Green-Ampt infiltration method was proven to be efficient for runoff estimation at field sized watershed with higher accuracies that could be efficiently used to develop site-specific Best Management Practices (BMPs) considering rainfall intensity, rather than simply using daily rainfall data.  相似文献   
105.
The capability of a tropical coastal clay to immobilize lead (Pb) and cadmium (Cd) was investigated in laboratory batch sorption tests conducted under acidic, neutral, and slightly alkaline conditions. The contact time was extended to 65 d. The distribution of Pb and Cd among various sorbed phases was examined using a sequential extraction technique. The sorbed phases were fractionated into the exchangeable, carbonate, reducible, organic, and residual fractions. There were only small changes in the total Pb and Cd sorption beyond a 1-d sorption period. The metal fractionation results show that the amount of Pb and Cd in various fractions changed with sorption time, and the changes were pH-dependent. These changes could be attributed to mineral dissolution and transformation or redistribution of the sorbed phases. Transformation of the sorbed phases resulted in increasing Pb and Cd retention in the more persistent fractions with time, at the expense of reductions in the loosely bound fractions. Nevertheless, Pb and Cd fractionation in the solid phase appeared to reach equilibrium within the 65-d sorption period. These Pb and Cd fractionation results reflect the effect of contamination time on the heavy metal lability and bioavailability in the subsurface environment.  相似文献   
106.
Fate and toxicity of endosulfan in Namoi River water and bottom sediment   总被引:1,自引:0,他引:1  
Endosulfan (6,7,8,9,10,10,-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) sorption (standardized to 1% total organic carbon and dry weight) was significantly (P < 0.05) more concentrated on the large (>63 microm) particle fraction compared with smaller size fractions (<5 microm and 5-24 microm) of bottom sediments from the Namoi River, Australia. Following completion of the particle size fractionation (6 to 12 wk) and a sediment toxicity assessment (2 wk), the sediments showed large decreases in concentrations of alpha-endosulfan that coincided with an increase in endosulfan sulfate concentrations and minimal changes in beta-endosulfan concentrations. In the Namoi River, similar patterns were observed in the composition of total endosulfan in monthly measurements of bottom sediments and in passive samplers placed in the water column following runoff from cotton (Gossypium hirsutum L.) fields. The toxicity of endosulfan sulfate in river water indicated by the nymphs of the epibenthic mayfly Jappa kutera, was more persistent than the alpha- and beta-endosulfan parent isomers due to its longer half-life. This suggests that endosulfan sulfate would contribute most to previously observed changes in population densities of aquatic biota. Measured concentrations of total endosulfan in river water of up to 4 microg L(-1) following storm runoff, exceed the range of the 96-h median lethal concentration (LC50) values in river water for both alpha-endosulfan (LC50 = 0.7 microg L(-1); 95% confidence interval [CI] = 0.5 to 1.1) and endosulfan sulfate (LC50 = 1.2 microg L(-1); 95% CI = 0.4 to 3.3). In contrast, the 10-d LC50 value for total endosulfan in the sediment toxicity test (LC50 = 162 microg kg(-1); 95% CI = 120 to 218 microg kg(-1)) was more than threefold higher than the highest measured concentration of total endosulfan in field samples of bottom sediment (48 microg kg(-1)). This suggests that pulse exposures of endosulfan in the water column following storm runoff may be more acutely toxic to riverine biota than in contaminated bottom sediment.  相似文献   
107.
The separation of the base flow component from a varying streamflow hydrograph is called “hydrograph analysis.” In this study, two digital filter based separation modules, the BFLOW and Eckhardt filters, were incorporated into the Web based Hydrograph Analysis Tool (WHAT) system. A statistical component was also developed to provide fundamental information for flow frequency analysis and time series analysis. The Web Geographic Information System (GIS) version of the WHAT system accesses and uses U.S. Geological Survey (USGS) daily streamflow data from the USGS web server. The results from the Eckhardt filter method were compared with the results from the BFLOW filter method that was previously validated, since measured base flow data were not available for this study. Following validation, the two digital filter methods in the WHAT system were run for 50 Indiana gaging stations. The Nash‐Sutcliffe coefficient values comparing the results of the two digital filter methods were over 0.91 for all 50 gaging stations, suggesting the filtered base flow using the Eckhardt filter method will typically match measured base flow. Manual separation of base flow from streamflow can lead to inconsistency in the results, while the WHAT system provides consistent results in less than a minute. Although base flow separation algorithms in the WHAT system cannot consider reservoir release and snowmelt that can affect stream hydrographs, the Web based WHAT system provides an efficient tool for hydrologic model calibration and validation. The base flow information from the WHAT system can also play an important role for sustainable ground water and surface water exploitation, including irrigation and industrial uses, and estimation of pollutant loading from both base flow and direct runoff. Thus, best management practices can be appropriately applied to reduce and intercept pollutant leaching if base flow contributes significant amounts of pollutants to the stream. This Web GIS based system also demonstrates how remote, distributed resources can be shared through the Internet using Web programming.  相似文献   
108.
Extrusion with an intermeshing corotating twin-screw extruder with a limited amount of water caused structural changes in corn starch. The structural changes resulted in a transformation-from a semicrystalline to an amorphous state and the development of orientation of molecular chains in the amorphous region during extrusion. These structural changes, in turn, caused an increase in theT g, tensile strength, and resilience of the extruded corn starch. Our experimental results showed that the tensile properties and resilience of the expanded corn starch extruded at 240‡C were the best: tensile strength, 1.7 kPa; tensile modulus, 40.4 kPa; and resilience, 57.2%. Extrusion produced an expanded corn starch suitable for protective loose-fill.  相似文献   
109.
Much attention has been devoted to how technological advancements have created a brave new workplace, revolutionzing the ways in which work is being carried out, and how employees can improve their productivity and efficiency. However, the advent of technology has also opened up new avenues and opportunities for individuals to misbehave. This study focused on cyberloafing—the act of employees using their companies' internet access for personal purposes during work hours. Cyberloafing, thus, represents a form of production deviance. Using the theoretical frameworks offered by social exchange, organizational justice and neutralization, we examined the often‐neglected dark side of the internet and the role that neutralization techniques play in facilitating this misbehavior at the workplace. Specifically, we developed a model which suggested that when individuals perceived their organizations to be distributively, procedurally and interactionally unjust, they were likely to invoke the metaphor of the ledger as a neutralization technique to legitimize their subsequent engagement in the act of cyberloafing. Data were collected with the use of an electronic questionnaire and focus group interviews from 188 working adults with access to the internet at the workplace. Results of structural equation modelling provided empirical support for all of our hypotheses. Implications of our findings for organizational internet policies are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
110.
Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process might lead to the high concentration of total nitrogen (T-N) impact on the effluent water quality. The objective of this study is to establish two machine learning models—artificial neural networks (ANNs) and support vector machines (SVMs), in order to predict 1-day interval T-N concentration of effluent from a wastewater treatment plant in Ulsan, Korea. Daily water quality data and meteorological data were used and the performance of both models was evaluated in terms of the coefficient of determination (R2), Nash–Sutcliff efficiency (NSE), relative efficiency criteria (drel). Additionally, Latin-Hypercube one-factor-at-a-time (LH-OAT) and a pattern search algorithm were applied to sensitivity analysis and model parameter optimization, respectively. Results showed that both models could be effectively applied to the 1-day interval prediction of T-N concentration of effluent. SVM model showed a higher prediction accuracy in the training stage and similar result in the validation stage. However, the sensitivity analysis demonstrated that the ANN model was a superior model for 1-day interval T-N concentration prediction in terms of the cause-and-effect relationship between T-N concentration and modeling input values to integrated food waste and waste water treatment. This study suggested the efficient and robust nonlinear time-series modeling method for an early prediction of the water quality of integrated food waste and waste water treatment process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号