首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   37篇
  国内免费   10篇
安全科学   40篇
废物处理   23篇
环保管理   174篇
综合类   96篇
基础理论   233篇
污染及防治   119篇
评价与监测   34篇
社会与环境   16篇
灾害及防治   10篇
  2023年   5篇
  2022年   17篇
  2021年   13篇
  2020年   24篇
  2019年   19篇
  2018年   22篇
  2017年   44篇
  2016年   28篇
  2015年   27篇
  2014年   31篇
  2013年   48篇
  2012年   46篇
  2011年   56篇
  2010年   43篇
  2009年   32篇
  2008年   35篇
  2007年   39篇
  2006年   29篇
  2005年   25篇
  2004年   20篇
  2003年   22篇
  2002年   17篇
  2001年   10篇
  2000年   7篇
  1999年   11篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   6篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有745条查询结果,搜索用时 15 毫秒
71.
Flood resilience has been rising up the political, economic and social agendas. Taking an integrated systems approach, using the right design guidance and tools and ensuring that education is in place for all stakeholders are three themes which are intrinsically linked to delivering flood resilience. This paper reviews these themes across the academic research, policy landscape and practitioner approaches, drawing conclusions on the way forward to increase our societies resilience to floods. The term ‘flood resilience’ is being increasingly used, however, it remains to be clearly defined and implemented. The UK, USA and Australia are leading the way in considering what flood resilience really means, but our review has found few examples of action underpinned by an understanding of systems and complexity. This review investigates how performance objectives & indicators are currently interpreted in guidance documents. It provides an in-depth exploration of the methods, that although developed through European and US expertise, can be used for worldwide application. Our analysis highlights that resilience is often embedded in engineering education and frequently linked to risk. This may however, mask the importance of resilience and where it differs from risk. With £2.6 billion to be spent in the UK over the next 6 years on strengthening the country’s flood and coastal defences, this is the opportunity to rethink resilience from a systems approach, and embed that learning into education and professional development of engineers. Our conclusions indicate how consolidating flood resilience knowledge between and within critical infrastructure sectors is the way forward to deliver flood resilience engineering.  相似文献   
72.
The euphausiid Euphausia crystallorophias Holt and Tattersall, 1906 is considered to be a neritic species. It has been found in greatest abundance along the Antarctic continental margins, often in association with regions of pack ice. Although E. crystallorophias has been observed at some islands to the west of the Antarctic Peninsula, the species has not previously been reported from islands of the maritime- or sub-Antarctic further north. During an oceanographic transect in November 1997 from South Georgia to the South Sandwich Islands, acoustic observations revealed a dense, discrete pelagic target at 50 m. The target was fished and was found to be an aggregation of small E. crystallorophias. The fishing location (54.48°S; 30.61°W) was >1500 km from the Antarctic continent, and >250 km from the nearest land, in water of several thousands of metres depth – clearly a non-neritic environment. Examination of hydrographic data revealed that the E. crystallorophias swarm had been located within a fast-flowing band of water that had characteristics of water found near the Antarctic Peninsula. This band was ≃150 km wide, and had a speed ranging from 9 to 22 km d−1 in a north-easterly direction. The possible origins of this E. crystallorophias swarm are explored in the light of the eddy-dominated current patterns prevalent in the Weddell–Scotia Confluence region, and with reference to published growth-rate estimates for the species. We discuss the potential for long-distance dispersal of E. crystallorophias and other neritic species in fast current jets, and examine how such oceanographic features could facilitate long-distance dispersal, colonization, and gene flow. Received: 23 November 1998 / Accepted: 25 March 1999  相似文献   
73.
ABSTRACT: The primary objective of this study was to perform a cost‐benefit analysis of maintaining the current level of water quality in the Catawba River basin. Economic benefits were estimated using a stated preference survey method designed to value respondents' willingness to pay for a management plan to protect water quality in the Catawba basin over time. From the surveys conducted with 1,085 area residents, we calculated an annual mean willingness to pay of $139 for the management plan, or more than $75.4 million for all taxpayers in the area. Over the five‐year time horizon in which respondents were asked to pay for the management plan, this resulted in a total economic benefit of $340.1 million. The Watershed Analysis Risk Management Framework model was used to estimate the amount of management activities needed to protect the current level of water quality in the basin over time. Based on the model results, the total cost of the management plan was calculated to be $244.8 million over a ten‐year period. The resulting cost‐benefit analysis indicated that the potential benefits of this management plan would outweigh the costs by more than $95 million.  相似文献   
74.
Protected areas (PAs) are a commonly used strategy to confront forest conversion and biodiversity loss. Although determining drivers of forest loss is central to conservation success, understanding of them is limited by conventional modeling assumptions. We used random forest regression to evaluate potential drivers of deforestation in PAs in Mexico, while accounting for nonlinear relationships and higher order interactions underlying deforestation processes. Socioeconomic drivers (e.g., road density, human population density) and underlying biophysical conditions (e.g., precipitation, distance to water, elevation, slope) were stronger predictors of forest loss than PA characteristics, such as age, type, and management effectiveness. Within PA characteristics, variables reflecting collaborative and equitable management and PA size were the strongest predictors of forest loss, albeit with less explanatory power than socioeconomic and biophysical variables. In contrast to previously used methods, which typically have been based on the assumption of linear relationships, we found that the associations between most predictors and forest loss are nonlinear. Our results can inform decisions on the allocation of PA resources by strengthening management in PAs with the highest risk of deforestation and help preemptively protect key biodiversity areas that may be vulnerable to deforestation in the future.  相似文献   
75.
76.
Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site-selection biases influence estimates of biodiversity change is largely unknown. Site-selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site-selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site-selection bias. We used a simple spatially resolved, individual-based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site-selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site-selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site-selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site-selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site-selection bias, we recommend use of systematic site-selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site-selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.  相似文献   
77.
78.
79.
80.
Bioremediation of 1,1,1‐trichloroethane (TCA) is more challenging than bioremediation of other chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE). TCA transformation often occurs under methanogenic and sulfate‐reducing conditions and is mediated by Dehalobacter. The source area at the project site contains moderately permeable medium sand with a low hydraulic gradient and is approximately 0.5 acre. TCA contamination generally extended to 35 feet, with the highest concentrations at approximately 20 feet. The concentrations then decreased with depth; several wells contained 300 to 600 mg/L of TCA prior to bioremediation. The area of treatment also contained 2 to 30 mg/L of TCE from an upgradient source. Initial site groundwater conditions indicated minimal biotic dechlorination and the presence of up to 20 mg/L of nitrate and 90 mg/L of sulfate. Microcosm testing indicated that TCA dechlorination was inhibited by the site's relatively low pH (5 to 5.5) and high TCA concentration. After the pH was adjusted and TCA concentrations were reduced to less than 35 mg/L (by dilution with site water), dechlorination proceeded rapidly using whey (or slower with sodium lactate) as an electron donor. Throughout the remediation program, increased resistance to TCA inhibition (from 35 to 200 mg/L) was observed as the microbes adapted to the elevated TCA concentrations. The article presents the results of a full‐scale enhanced anaerobic dechlorination recirculation system and the successful efforts to eliminate TCA‐ and pH‐related inhibition. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号