首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9937篇
  免费   15篇
  国内免费   5篇
安全科学   8篇
废物处理   780篇
环保管理   1262篇
综合类   986篇
基础理论   3199篇
污染及防治   1774篇
评价与监测   1023篇
社会与环境   920篇
灾害及防治   5篇
  2023年   6篇
  2022年   5篇
  2021年   11篇
  2020年   14篇
  2019年   7篇
  2018年   1496篇
  2017年   1385篇
  2016年   1213篇
  2015年   135篇
  2014年   34篇
  2013年   30篇
  2012年   476篇
  2011年   1364篇
  2010年   698篇
  2009年   609篇
  2008年   891篇
  2007年   1230篇
  2006年   16篇
  2005年   24篇
  2004年   42篇
  2003年   71篇
  2002年   104篇
  2001年   17篇
  2000年   16篇
  1999年   4篇
  1998年   13篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1984年   11篇
  1983年   8篇
  1981年   2篇
  1980年   1篇
  1964年   1篇
  1935年   2篇
排序方式: 共有9957条查询结果,搜索用时 453 毫秒
171.
Economic values of water for the main Public Irrigation Schemes in the sub-middle region of the São Francisco River Basin, in northeastern Brazil, are determined in this study using an integration of a global agro-economic land and water use (MAgPIE) with a local economic model (Positive Mathematical Programming). As in the latter, the water values depend on the crops grown, and as Brazilian agriculture is strongly influenced by the global market, we used a regionalized version of the global model adapted to the region in order to simulate the crop land use, which is in turn determined by changes in global demand, trade barriers, and climate. The allocation of sugarcane and fruit crops projected with climate change by the global model, showed an impact on the average yields and on the water costs in the main schemes resulting in changes in the water values locally. The economic values for all schemes in the baseline year were higher than the water prices established for agricultural use in the basin. In the future, these water values will be higher in all the schemes. The highest water values currently and in the future were identified in municipalities with a significant proportion of area growing irrigated sugarcane. Being aware of current water values of each user in a baseline year and in a projected future under global climate and socioeconomic changes, decision makers should improve water allocation policies at local scale, in order to avoid conflicts and unsustainable development in the future.  相似文献   
172.
Agricultural systems have experienced rapid expansion and intensification in the last several decades. In Uruguay, since the beginning of 2000, the most common cropping systems have included soybeans. Currently, this crop is expanding towards lowlands traditionally occupied by rice in rotation with pastures. However, the environmental effects of agricultural intensification and diversification are not well known. Thus, some indices have been proposed to quantify the changes in agricultural production systems and assess water quality. The main goal of this study was to develop a water quality index (WQI) to assess the impacts of the diversification of rice production systems in northwest Uruguay. The study was carried out in an agricultural basin where other summer crops have been incorporated in the rice-pasture sequence. Agriculture intensification and crop diversification indices were calculated using information provided by farmers. Water samples were collected downstream of the production area before crop sowing and after crop harvest (2008–2009 to 2010–2011 and 2016–2017 to 2017–2018). Biochemical oxygen demand, nitrates, total phosphorus, fecal coliforms, and total suspended solids were the variables that mainly explained the effects of the agricultural activities on water quality. The proposed water quality index included these unweighted variables, which allowed for the pre-sowing and post-harvest to be differentiated, as well as the degree of diversification. Therefore, the proposed WQI constitutes a tool that can be used to evaluate the water quality in an agricultural basin. Likewise, it can be used to select agricultural sequences that generate the least possible impacts on the associated water resources.  相似文献   
173.
Nitrogen is commonly known as a food source for crops. However, the nitrogen compounds used in crop fertilizers, most commonly nitrate (NO3) and ammonium (NH4), are not widely understood. Blueberry plants do not take up these compounds as efficiently as organic nitrogen so varying amounts of leaching into the soil and groundwater will occur. A biogeochemical model consisting of ordinary and partial differential equations is implemented to computationally predict the concentrations of nitrate and ammonium in unsaturated soil of blueberry plants, specifically in the southern region of New Jersey. The model takes into account the type of soil of the region, the nitrate uptake of the plant, the water content in the roots region, the pressure heads in the soil pores, and the application rates of fertilizers containing nitrate, ammonium, and organic nitrogen. Computational simulations demonstrate that the model accounts for natural processes and, in addition, show that commonly used fertilizer application rates cause unnecessarily high concentrations of both nitrate and ammonium in the unsaturated soil level. Further, simulations show that decreasing nitrate fertilizer applications by 85.7% in annual and 91.8% in bi-annual schedules provides an optimal system for safe reapplication.  相似文献   
174.
The afforestation of arid lands faces many challenges, and perhaps the most important key for success is choosing one or more species that are adapted well for local environmental conditions. We explored species that would be suitable for the steppe region of Central Anatolia. Intensive site preparation included ripping the subsoil (to 80 cm) and plowing the upper soil before planting seedlings of Elaeagnus angustifolia, Robinia pseudoacacia, Fraxinus angustifolia, and Pinus nigra were used as tree species. We also tested the success of several shrub species: Amygdalus orientalis, Calligonum polygonoides, and Spartium junceum. After five growing seasons, E. angustifolia showed the highest survival, with 80% of planted seedlings remaining. For the shrubs, A. orientalis was the most successful species with a 95% survival rate. Broad-leaved trees grew a cumulative average of 34 cm in height in 5 years, whereas P. nigra seedings grew only 9 cm. The greatest height growth occurred in the shrubs, with A. orientalis gaining 40 cm in height in 5 years. Overall, E. angustifolia and A. orientalis appeared best suited for afforestation in these areas. R. pseodoacacia and F. angustifolia may also be used as alternative species.  相似文献   
175.
Textile industry needs to recover and reuse its wastewater as to fulfil the demand of increasingly strict regulations. The characterization of dyeing wastewater samples according to textile fiber and final textile effluent enables the application of different treatment methods. This study aims to characterize dyeing wastewater in black color of polyamide, polyester, and viscose fibers and final textile effluent. Samples were collected and characterized completely for major pollution indicator parameters. Dyeing wastewater of polyester showed higher values for some parameters, e.g., 4994.44% (49,944,400 mg L?1 and 917 NTU) of turbidity and 4100.00% of phenol when compared to dyeing wastewater of other fibers. Other parameters such as pH, alkalinity, color, phosphorus, nitrogen, sulfides, chlorides, oil and grease, dissolved solids, and chemical and biochemical oxygen demand were also assessed. In addition to individual characterization, this study also presents a correlation of the contribution of each parameter to the final textile effluent. Although dyeing wastewater of polyamide contributes the most in terms of quantity for the final effluent, this study revealed that dyeing wastewater of polyester influenced the most on the final composition of the textile wastewater when evaluating color, turbidity, total iron, biochemical oxygen demand, chemical oxygen demand, phenol, mercury, oil and grease, and total phosphorus. The present study is focused on bringing new insights to provide future research with other strategies to improve the treatment of dyeing wastewater. In addition, some suggestions are also given for wastewater treatments according to type of textile fiber.  相似文献   
176.
The effectiveness of environmental protection measures is based on the early identification and diagnosis of anthropogenic pressures. Similarly, restoration actions require precise monitoring of changes in the ecological quality of ecosystems, in order to highlight their effectiveness. Monitoring the ecological quality relies on bioindicators, which are organisms revealing the pressures exerted on the environment through the composition of their communities. Their implementation, based on the morphological identification of species, is expensive because it requires time and experts in taxonomy. Recent genomic tools should provide access to reliable and high-throughput environmental monitoring by directly inferring the composition of bioindicators’ communities from their DNA (metabarcoding). The French-Swiss program SYNAQUA (INTERREG France-Switzerland 2017–2019) proposes to use and validate the tools of environmental genomic for biomonitoring and aims ultimately at their implementation in the regulatory bio-surveillance. SYNAQUA will test the metabarcoding approach focusing on two bioindicators, diatoms, and aquatic oligochaetes, which are used in freshwater biomonitoring in France and Switzerland. To go towards the renewal of current biomonitoring practices, SYNAQUA will (1) bring together different actors: scientists, environmental managers, consulting firms, and biotechnological companies, (2) apply this approach on a large scale to demonstrate its relevance, (3) propose robust and reliable tools, and (4) raise public awareness and train the various actors likely to use these new tools. Biomonitoring approaches based on such environmental genomic tools should address the European need for reliable, higher-throughput monitoring to improve the protection of aquatic environments under multiple pressures, guide their restoration, and follow their evolution.  相似文献   
177.
Ust-Kamenogorsk is one of the largest cities and industrial centers in Kazakhstan. Non-ferrous metallurgy (Zn–Pb smelter) has acted as a predominating industrial branch in the city since late 1940s. The industrial plants are situated directly adjacent to the residential area of the city which creates grievous ecotoxicological hazard. In the present paper, we aimed at assessing the trace metal pollution of top soils in Ust-Kamenogorsk and its potential threats to the local population. The top soils were sampled at 10 sites throughout the city center. We determined the physical and chemical properties of soils as well as the contents of Cd, Cu, Pb, and Zn. In addition, the soil samples were subjected to a five-step sequential extraction to ascertain the fractionation of trace metals. On this basis, we calculated the geoaccumulation index (Igeo) and pollution load index (PLI) and assessed bioavailability of the elements. From our data, it emerged that the soils displayed a strong polymetallic pollution. PLI was as high as 33.4. Throughout the city, the trace metal contents exceeded the geochemical background and allowable values for residential, recreational, and institutional areas. The Igeo obtained were 3.7–6.5 for Cd, 1.5–4.7 for Cu, 2.8–5.7 for Pb, and 2.6–4.6 for Zn. The soils in Ust-Kamenogorsk displayed extremely high contamination with Cd, moderate to strong contamination with Pb and Zn, and low to moderate contamination with Cu. Cd and Pb were found to be the most bioavailable elements. The mobility of trace metals in the soils changed in the order Cd > Pb > Zn > Cu.  相似文献   
178.
Assessing epistemic uncertainties is considered as a milestone for improving numerical predictions of a dynamical system. In hydrodynamics, uncertainties in input parameters translate into uncertainties in simulated water levels through the shallow water equations. We investigate the ability of generalized polynomial chaos (gPC) surrogate to evaluate the probabilistic features of water level simulated by a 1-D hydraulic model (MASCARET) with the same accuracy as a classical Monte Carlo method but at a reduced computational cost. This study highlights that the water level probability density function and covariance matrix are better estimated with the polynomial surrogate model than with a Monte Carlo approach on the forward model given a limited budget of MASCARET evaluations. The gPC-surrogate performance is first assessed on an idealized channel with uniform geometry and then applied on the more realistic case of the Garonne River (France) for which a global sensitivity analysis using sparse least-angle regression was performed to reduce the size of the stochastic problem. For both cases, Galerkin projection approximation coupled to Gaussian quadrature that involves a limited number of forward model evaluations is compared with least-square regression for computing the coefficients when the surrogate is parameterized with respect to the local friction coefficient and the upstream discharge. The results showed that a gPC-surrogate with total polynomial degree equal to 6 requiring 49 forward model evaluations is sufficient to represent the water level distribution (in the sense of the \(\ell _2\) norm), the probability density function and the water level covariance matrix for further use in the framework of data assimilation. In locations where the flow dynamics is more complex due to bathymetry, a higher polynomial degree is needed to retrieve the water level distribution. The use of a surrogate is thus a promising strategy for uncertainty quantification studies in open-channel flows and should be extended to unsteady flows. It also paves the way toward cost-effective ensemble-based data assimilation for flood forecasting and water resource management.  相似文献   
179.
The degree to which an individual feels connected to the natural world can be a positive predictor of pro-environmental behavior (PEB). This has led to calls to ‘reconnect to nature’ as a ‘treatment’ for PEB. What is not clear is the relationship between where one feels connected to nature and where one acts pro-environmentally. We propose that integrating spatial scale into the conceptualization of these constructs will provide insights into how different degrees of connectedness influence pro-environmental behavior. We discuss trends towards a spatial understanding of human–nature connectedness (HNC) and introduce three archetypes that highlight scalar relationships between scale of connectedness and scale of pro-environmental behavior: (1) equal interactions, (2) embedded interactions, and (3) extended interactions. We discuss potential policy and practice implications of taking a spatially explicit approach to HNC–PEB research, and propose a research agenda for investigating these scalar relationships that can inform nature as a ‘treatment’ intervention.  相似文献   
180.
The poor operational status of some wastewater treatment plants often result in the discharge of inadequately treated effluent into receiving surface waters. This is of significant public health concern as there are many informal settlement dwellers (ISDs) that rely on these surface waters for their domestic use. This study investigated the treatment efficiency of two independent wastewater treatment plants (WWTPs) in Durban, South Africa and determined the impact of treated effluent discharge on the physicochemical and microbial quality of the receiving water bodies over a 6-month period. Presumptive Escherichia coli isolates were identified using biochemical tests and detection of the mdh gene via PCR. Six major virulence genes namely eae, hly, fliC, stx1, stx2, and rfbE were also detected via PCR while antibiotic resistance profiles of the isolates were determined using Kirby-Bauer disc diffusion assay. The physicochemical parameters of the wastewater samples ranged variously between 9 and 313.33 mg/L, 1.52 and 76.43 NTUs, and 6.30 and 7.87 for COD, turbidity, and pH respectively, while the E. coli counts ranged between 0 and 31.2?×?103 CFU/ml. Of the 200 selected E. coli isolates, the hly gene was found in 28 %, fliC in 20 %, stx2 in 17 %, eae in 14 %, with stx1 and rfbE in only 4 % of the isolates. Notable resistance was observed toward trimethoprim (97 %), tetracycline (56 %), and ampicillin (52.5 %). These results further highlight the poor operational status of these WWTPs and outline the need for improved water quality monitoring and enforcement of stringent guidelines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号