首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   993篇
  免费   3篇
  国内免费   52篇
安全科学   65篇
废物处理   88篇
环保管理   87篇
综合类   97篇
基础理论   131篇
环境理论   4篇
污染及防治   378篇
评价与监测   127篇
社会与环境   65篇
灾害及防治   6篇
  2023年   38篇
  2022年   123篇
  2021年   97篇
  2020年   21篇
  2019年   37篇
  2018年   35篇
  2017年   50篇
  2016年   47篇
  2015年   21篇
  2014年   32篇
  2013年   99篇
  2012年   43篇
  2011年   57篇
  2010年   42篇
  2009年   37篇
  2008年   31篇
  2007年   37篇
  2006年   20篇
  2005年   15篇
  2004年   14篇
  2003年   17篇
  2002年   19篇
  2001年   16篇
  2000年   10篇
  1999年   8篇
  1998年   3篇
  1997年   8篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有1048条查询结果,搜索用时 15 毫秒
21.
This study aimed to fabricate new and effective material for the efficiency of phosphate adsorption. Two types of adsorbent materials, the zirconium hydroxides embedded in pomegranate peel (Zr/Peel) and zirconium-lanthanum hydroxides embedded in pomegranate peel (Zr–La/Peel) were developed. Scanning electronic microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) were evaluated to give insight into the physicochemical properties of these adsorbents. Zr–La/Peel exceeded the adsorption efficiency of Zr/Peel adsorbents in batch adsorption experiments at the same pH level. The peel as a host can strive to have a strong “shielding effect” to increase the steadiness of the entrenched Zr and La elements. La and Zr are hydroxide metals that emit many hydrogen ions during the hydrolysis reaction, which contribute to protonation and electrostatic attraction. The highest adsorption capacity of La–Zr/Peel for phosphate was calculated to be 40.21 mg/g, and pseudo second-order equation is very well fitted for kinetic adsorption. Phosphate adsorption efficiency was reduced by an increase of pH. With the background of coexisting Cl?, little effect on adsorption efficiency was observed, while adsorption capacities were reduced by almost 20–30% with the coexistence of SO42?, NO3? and humic acid (HA).  相似文献   
22.
Nitrogen (N) availability is a very important determinant of crop yield. It is also one of the most expensive inputs in crop production. Thus, the efficient management of N by farmers with limited resource is a very important part of successful soil and crop management system. A field study was conducted on a Norfolk sandy loam soil at the George Washington Carver Agricultural Experiment Station, Tuskegee, AL, to evaluate the influence of fertilizer source and timing on the yield of four sweet potato [Ipomoea batatas (L.)] cultivars. Two N sources (urea, CO(NH2)2 and ammonium nitrate, NH4NO3), four sweet potato cultivars (‘Georgia Jet’, GA-Jet; ‘TU-82-155’, TU-155; ‘TU-1892’; and ‘Rojo Blanco’, Rojo-Bl) and three times (zero, single, and split applications) were used in a factorial designed experiment. Plants were harvested after 80 and 120 days and total and marketable yields determined. Nitrogen recovery efficiency, yield efficiency and physiological efficiency were also determined. Total and marketable yields of early maturing cultivars were significantly higher than of late maturing cultivars (P<0.05). The single application of N resulted in significantly higher yield in storage roots than split application (P<0.05). Physiological efficiency values were highly correlated with total marketable yields. Recovery rates increased with time. Late maturing cultivars tended to have higher N recovery and physiological efficiency than early maturing cultivars. These results suggest that cultivar maturity group should play an important part in N fertilization recommendations for sweet potato.  相似文献   
23.
A field study was conducted to evaluate the protozoan colonization patterns on artificial substrates in relation to organic pollution within a tropical harbour. The composition of protozoans and their succession rates on artificial substrates(polyurethane foam units) were compared between two field stations(A and B), and their presence were considered with regards to the prevailing water quality conditions at the study sites. Altogether 44 genera of flagellates and ciliates were documented. The common genera of flagellates encountered included Monas, Polytoma, and Chromalina. Among the ciliates, the predominant genera were Tetrahymena, Vorticella, Lagymophyra, and Heloiphyra. These groups exhibited characteristic successional patterns in relation to ambient water quality. At Station A, located close to the sewage outfall, the water quality parameters included poor Secchi-disc transparency(0.48 m), dissolved oxygen of 1.93 mg/ml, salinity of 18 psu, and temperature 31.3 degrees C. Here, the nanoflagellates (spumella) colonized first, followed by microcilliate(Tetrahymena) and sessile form(Vorticella). Station B, located on the seaward side, was characterized by relatively less-stressed environmental conditions with transparency 1.85 m and dissolved oxygen value of 6.04 mg/ml. Salinity of 27.27 psu, and mean temperature of 30 degrees C were recorded at "B". At this station, the nanoflagellate Polytoma was first documented to colonize on the substrates, followed by microcilliate(Lagynophrya) and suctorid(Heliophyra). These findings support the use of protozoans as indicator species for evaluating the hazards posed by organic pollution to natural estuarine communities.  相似文献   
24.
Denitrification experiments have provided data showing the pitfalls and successes in developing a sustainable injection/extraction system in a sand and gravel aquifer. Experiments increase in complexity from continuous injection at one well to automated‐pulsed eight well injections. In both continuous and pulsed injection of organic carbon, 40 mg NO3‐N l?1 was reduced below the detection limit of < 0.1 mg NO3‐N l?1 in the denitrification zones. Under continuous injection, accumulation of bacterial exudates in the vicinity of the injection well resulted in injection well clogging within ten days. Periodic cleaning of the injection well and the adjacent gravel matrix was accomplished by using a tool developed to circulate a cleaning solution composed of 5 percent H2O2 and 0.02 percent NaOCl; but, biofouling could not be eliminated. In the later experiments, acetate became the carbon amendment because ethanol promoted more biomass development. A specialized pulse injection procedure was developed to separate nitrate from acetate‐C and was successful in alleviating the proliferation of bacterial exudates without affecting the performance of the denitrification system. Using pulsed injection, a maximum of 72 percent nitrate reduction was accomplished in the extraction well water, and denitrification was sustained for three months without clogging. © 2003 Wiley Periodicals, Inc.  相似文献   
25.
Bangladesh is a very flat delta built up by the Ganges—Brahmaputra—Meghna/Barak river systems. Because of its geographical location, floods cause huge destruction of lives and properties almost every year. Water control programs have been undertaken to enhance development through mitigating the threat of disasters. This structural approach to flood hazard has severely affected floodplain fisheries that supply the major share of protein to rural Bangladesh, as exemplified by the Chandpur Irrigation Project. Although the regulated environment of the Chandpur project has become favorable for closed-water cultured fish farming, the natural open-water fishery loss has been substantial. Results from research show that fish yields were better under preproject conditions. Under project conditions per capita fish consumption has dropped significantly, and the price of fish has risen beyond the means of the poor people, so that fish protein in the diet of poor people is gradually declining. Bangladesh is planning to expand water control facilities to the remaining flood-prone areas in the next 15–20 years. This will cause further loss of floodplain fisheries. If prices for closed-water fish remain beyond the buying power of the poor, alternative sources of cheap protein will be required.  相似文献   
26.
Hazard and operability (HAZOP) studies constitute an essential step in the risk analysis of any chemical process industry and involve systematic identification of every conceivable abnormal process deviation, its causes and abnormal consequences. These authors have recently proposed optHAZOP as an alternative procedure for conducting HAZOP studies in a shorter span of time than taken by conventional HAZOP procedure, with greater accuracy and effectiveness [Khan, F. I. and Abassi, S. A., optHAZOP. An effective and efficient technique for hazard identification and assessment Journal of Loss Prevention in the Process Industries, 1997, 10, 191–204]. optHAZOP consists of several steps, the most crucial one requires use of a knowledge-based software tool which would significantly reduce the requirement of expert man-hours and speed up the work of the study team. TOPHAZOP (Tool for OPTmizing HAZOP) has been developed to fulfil this need.

The TOPHAZOP knowledge-base consists of two main branches: process-specific and general. The TOPHAZOP framework allows these two branches to interact during the analysis to address the process-specific aspects of HAZOP analysis while maintaining the generality of the system. The system is open-ended and modular in structure to make easy implementation and/or expansion of knowledge. The important features of TOPHAZOP and its performance on an industrial case study are described.  相似文献   

27.
Summary The balance of evidence suggests a perceptible human influence on global ecosystems. Human activities are affecting the global ecosystem, some directly and some indirectly. If researchers could clarify the extent to which specific human activities affect global ecosystems, they would be in a much better position to suggest strategies for mitigating against the worst disturbances. Sophisticated statistical analysis can help in interpreting the influence of specific human activities on global ecosystems more carefully. This study aims at identifying significant or influential human activities (i.e. factors) on CO2 emissions using statistical analyses. The study was conducted for two cases: (i) developed countries and (ii) developing countries. In developed countries, this study identified three influential human activities for CO2 emissions: (i) combustion of fossil fuels, (ii) population pressure on natural and terrestrial ecosystems, and (iii) land use change. In developing countries, the significant human activities causing an upsurge of CO2 emissions are: (i) combustion of fossil fuels, (ii) terrestrial ecosystem strength and (iii) land use change. Among these factors, combustion of fossil fuels is the most influential human activity for CO2 emissions both in developed and developing countries. Regression analysis based on the factor scores indicated that combustion of fossil fuels has significant positive influence on CO2 emissions in both developed and developing countries. Terrestrial ecosystem strength has a significant negative influence on CO2 emissions. Land use change and CO2 emissions are positively related, although regression analysis showed that the influence of land use change on CO2 emissions was still insignificant. It is anticipated, from the findings of this study, that CO2 emissions can be reduced by reducing fossil-fuel consumption and switching to alternative energy sources, preserving exiting forests, planting trees on abandoned and degraded forest lands, or by planting trees by social/agroforestry on agricultural lands.  相似文献   
28.
A multi-objective optimisation approach to water management   总被引:3,自引:0,他引:3  
The management of river basins is complex especially when decisions about environmental flows are considered in addition to those concerning urban and agricultural water demand. The solution to these complex decision problems requires the use of mathematical techniques that are formulated to take into account conflicting objectives. Many optimization models exist for water management systems but there is a knowledge gap in linking bio-economic objectives with the optimum use of all water resources under conflicting demands. The efficient operation and management of a network of nodes comprising storages, canals, river reaches and irrigation districts under environmental flow constraints is challenging. Minimization of risks associated with agricultural production requires accounting for uncertainty involved with climate, environmental policy and markets. Markets and economic criteria determine what crops farmers would like to grow with subsequent effect on water resources and the environment. Due to conflicts between multiple goal requirements and the competing water demands of different sectors, a multi-criteria decision-making (MCDM) framework was developed to analyze production targets under physical, biological, economic and environmental constraints. This approach is described by analyzing the conflicts that may arise between profitability, variable costs of production and pumping of groundwater for a hypothetical irrigation area.  相似文献   
29.
The present study was conducted to investigate the contamination of water, sediments, and fish tissues with heavy metals in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Water, sediments, and fish (Shizothorax plagiostomus) samples were collected from September 2012 to January 2013 at three different sites (upstream site at Sharigut, sewage site at Timergara, and downstream site at Sadoo) of river Panjkora. The concentrations of heavy metals in water were in the order Zn?>?Cu?≈?Pb?>?Ni?≈?Cd with mean values of 0.30, 0.01, 0.01, 0.0 and 0.0 mg/l, respectively, which were below the maximum permissible limits of WHO for drinking water. In sediments, heavy metals were found in the order Cu?>?Zn?>?Ni?>?Pb?>?Cd with mean concentrations of 50.6, 38.7, 9.3, 8, and 0.4 mg/kg, respectively. Ni and Cd were not found in any fish tissues, but Zn, Cu, and Pb were detected with the mean concentration ranges of 0.04–1.19, 0.03–0.12, and 0.01–0.09 μg/g, respectively. The present study demonstrates that disposal of waste effluents causes a slight increase in the concentration of heavy metals in river Panjkora as revealed by variation in metal concentrations from upstream to downstream site. Sewage disposal was also found to change physicochemical characteristics of Panjkora water. At present, water and fish of river Panjkora are safe for human consumption, but the continuous sewage disposal may create problems in the future.  相似文献   
30.
In this paper, we investigate how mountain communities perceive and adapt to climatic and environmental change. Primary data were collected at community and household level through in-depth interviews, focus group discussions, and quantitative questionnaires covering 210 households in six villages of the West Karakoram (Hundur and Darkut in the Yasin Valley; Hussainabad, Altit, Gulmit, and Shiskat in the Hunza valley of Gilgit-Baltistan). The relevance of the area with respect to our scopes is manifold. First, this is one of the most extreme and remote mountainous areas of the world, characterized by complex and fragile institutional and social fabrics. Second, this region is one of the focal points of research for the hydro-meteo-climatological scientific community, because of its relevance in terms of storage and variability of water resources for the whole Indus basin, and for the presence of conflicting signals of climate change with respect to the neighboring regions. Third, the extreme hardships due to a changing environment, as well as to the volatility of the social and economic conditions are putting great stress on the local population. As isolating climate change as a single driver is often not possible, community perceptions of change are analyzed in the livelihood context and confronted with multi-drivers scenarios affecting the lives of mountain people. We compare the collected perceptions with the available hydro-climatological data, trying to answer some key questions such as: how are communities perceiving, coping with, and adapting to climatic and environmental change? Which are the most resorted adaptation strategies? How is their perception of change influencing the decision to undertake certain adaptive measures?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号