首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   1篇
安全科学   15篇
废物处理   8篇
环保管理   15篇
综合类   23篇
基础理论   20篇
污染及防治   87篇
评价与监测   9篇
社会与环境   4篇
灾害及防治   1篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   7篇
  2015年   4篇
  2014年   4篇
  2013年   19篇
  2012年   10篇
  2011年   13篇
  2010年   4篇
  2009年   14篇
  2008年   4篇
  2007年   10篇
  2006年   8篇
  2005年   6篇
  2004年   25篇
  2003年   4篇
  2002年   4篇
  2001年   11篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1989年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有182条查询结果,搜索用时 31 毫秒
11.
In a warming climate, permafrost is likely to be significantly reduced and eventually disappear from the sub-Arctic region. This will affect people at a range of scales, from locally by slumping of buildings and roads, to globally as melting of permafrost will most likely increase the emissions of the powerful greenhouse gas methane, which will further enhance global warming. In order to predict future changes in permafrost, it is crucial to understand what determines the presence or absence of permafrost under current climate conditions, to assess where permafrost is particularly vulnerable to climate change, and to identify where changes are already occurring. The Tornetr?sk region of northern sub-Arctic Sweden is one area where changes in permafrost have been recorded and where permafrost could be particularly vulnerable to any future climate changes. This paper therefore reviews the various physical, biological, and anthropogenic parameters that determine the presence or absence of permafrost in the Tornetr?sk region under current climate conditions, so that we can gain an understanding of its current vulnerability and potential future responses to climate change. A patchy permafrost distribution as found in the Tornetr?sk region is not random, but a consequence of site-specific factors that control the microclimate and hence the surface and subsurface temperature. It is also a product of past as well as current processes. In sub-Arctic areas such as northern Sweden, it is mainly the physical parameters, e.g., topography, soil type, and climate (in particular snow depth), that determine permafrost distribution. Even though humans have been present in the study area for centuries, their impacts on permafrost distribution can more or less be neglected at the catchment level. Because ongoing climate warming is projected to continue and lead to an increased snow cover, the permafrost in the region will most likely disappear within decades, at least at lower elevations.  相似文献   
12.
Environmental Science and Pollution Research - In recent years, the occurrence of microplastics in the aquatic environment has gathered increasing scientific interest. Several studies have shown...  相似文献   
13.
Seasonal and long-term variations in the body size of planktonic copepods were studied in the northern Baltic Sea. The influence of temperature, salinity and phytoplankton concentration to the body size of Eurytemora affinis, Acartia bifilosa and Limnocalanus macrurus (Calanoida) was examined at three sea areas, differing in their hydrographical and trophic conditions (an archipelago area and an enclosed bay on the SW coast of Finland in 1992 and at an open sea station in the Gulf of Bothnia in 1991). There was an inverse relationship between copepod body length and temperature, while there was a direct effect of phytoplankton concentration. According to multiple regression analysis, the relative importance of these factors varied according to species, developmental stage and study area. In the archipelago area, copepod body size was mainly determined by temperature, while in the open Gulf of Bothnia, phytoplankton concentration was usually more important. Interannual variation in the summer body length of E. affinis and A. bifilosa was examined using samples collected over 18 years (1967 to 1984) in the archipelago area. In this analysis, the inverse relationship between water temperature and copepod body size disappeared; in E. affinis the average female length correlated positively with summer temperature. We suggest that the length and timing of the study period greatly influence the investigator's view of the factors regulating copepod body size.  相似文献   
14.
The extent of the nocturnal vertical migration of Mysis mixta Lilljeborg varied between early July and late October (of 1985 and 1986) in a coastal area of the Baltic Sea. Migration was more restricted in early July and late October. Seasonal changes in surface light levels and transparency were sufficient to explain the observed differences. Mysids avoided light levels above 10-4 lux throughout the study period. Smaller juveniles migrated higher up than larger juveniles and adults. A two-layered distribution with part of the population close to the bottom was observed at night. Zooplankton were more abundant in water layers above the main concentration of mysids. M. mixta fed on phytoplankton, detritus, copepods, cladocerans, rotifers and tintinnids. Diel changes in gut fluorescence indicated a higher intake of phytoplankton at night, but levels were low compared to primarily herbivorous zooplankton. Comparisons of stomach contents of mysids caught at the bottom in the evening and in the water column at night showed a higher ingestion of zooplankton at night and of detritus during the day. Mysids caught at the bottom at night had an intermediate diet. Copepods and cladocerans constituted between 90 and 100% of ingested material by weight in all mysid groups.  相似文献   
15.
An assessment of impacts on Arctic terrestrial ecosystems has emphasized geographical variability in responses of species and ecosystems to environmental change. This variability is usually associated with north-south gradients in climate, biodiversity, vegetation zones, and ecosystem structure and function. It is clear, however, that significant east-west variability in environment, ecosystem structure and function, environmental history, and recent climate variability is also important. Some areas have cooled while others have become warmer. Also, east-west differences between geographical barriers of oceans, archipelagos and mountains have contributed significantly in the past to the ability of species and vegetation zones to relocate in response to climate changes, and they have created the isolation necessary for genetic differentiation of populations and biodiversity hot-spots to occur. These barriers will also affect the ability of species to relocate during projected future warming. To include this east-west variability and also to strike a balance between overgeneralization and overspecialization, the ACIA identified four major sub regions based on large-scale differences in weather and climate-shaping factors. Drawing on information, mostly model output that can be related to the four ACIA subregions, it is evident that geographical barriers to species re-location, particularly the distribution of landmasses and separation by seas, will affect the northwards shift in vegetation zones. The geographical constraints--or facilitation--of northward movement of vegetation zones will affect the future storage and release of carbon, and the exchange of energy and water between biosphere and atmosphere. In addition, differences in the ability of vegetation zones to re-locate will affect the biodiversity associated with each zone while the number of species threatened by climate change varies greatly between subregions with a significant hot-spot in Beringia. Overall, the subregional synthesis demonstrates the difficulty of generalizing projections of responses of ecosystem structure and function, species loss, and biospheric feedbacks to the climate system for the whole Arctic region and implies a need for a far greater understanding of the spatial variability in the responses of terrestrial arctic ecosystems to climate change.  相似文献   
16.
Epidemiological, psychophysiological and survey data all converge on the conclusion that driving a bus in an urban area is extremely stressful, posing serious health risks. We show that reductions in job hassles while operating buses largely account for the salutary effects of a job environment intervention designed to lessen traffic congestion, diminish passenger demands on drivers, and generally ease bus operation. This study also makes methodological contributions to the stress and health literature. Independent observers' assessments of changes in job hassles caused by a field intervention predict, in a longitudinal design, multimethodological markers of stress including blood pressure, heart rate, and a standardized self‐report index of stress. The value of utilizing job re‐design studies to more rigorously investigate stress and health is discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
17.
Understanding and predicting species range expansions is an important challenge in modern ecology because of rapidly changing environments. Recent studies have revealed that consistent within-species variation in behavior (i.e., animal personality) can be imperative for dispersal success, a key process in range expansion. Here we investigate how habitat isolation can mediate differentiation of personality traits between recently founded island populations and the main population. We performed laboratory studies of boldness and exploration across life stages (tadpoles and froglets) using four isolated island populations and four mainland populations of the common frog (Rana temporaria). Both tadpoles and froglets from isolated populations were bolder and more exploratory than conspecifics from the mainland. Although the pattern can be influenced by possible differences in predation pressure, we suggest that this behavioral differentiation might be the result of a disperser-dependent founder effect brought on by an isolation-driven environmental filtering of animal personalities. These findings can have important implications for both species persistence in the face of climate change (i.e., range expansions) and ecological invasions as well as for explaining rapid speciation in isolated patches.  相似文献   
18.
Tropical organisms colonizing temperate environments face reduced average temperatures and dramatic thermal fluctuations. Theoretical models postulate that thermal specialization should be favored either when little environmental variation is experienced within generations or when among-generation variation is small relative to within-generation variation. To test these predictions, we studied six temperate species of damselflies differing in latitudinal distribution. We developed a computer model simulating how organisms experience environmental variation (accounting for diapause and voltinism) and performed a laboratory experiment assaying thermal sensitivities of growth rates. The computer model showed opposing latitudinal trends in among- and within-generation thermal variability: within-generation thermal variability decreased toward higher latitudes, whereas relative levels of among-generation thermal variability peaked at midlatitudes (where a shift in voltinism occurred). The growth experiment showed that low-latitude species were more thermally generalized than mid- and high-latitude species, supporting the prediction that generalists are favored under high levels of within-generation variation. Northern species had steeper, near-exponential reaction norms suggestive of thermal specialization. However, they had strikingly high thermal optima and grew very slowly over most of the thermal range they are expected to experience in the field. This observation is at present difficult to explain. These results highlight the importance of considering interactions between life history and environmental variation when deriving expectations of thermal adaptation.  相似文献   
19.
Johansson V  Ranius T  Snäll T 《Ecology》2012,93(2):235-241
The colonization-extinction dynamics of many species are affected by the dynamics of their patches. For increasing our understanding of the metapopulation dynamics of sessile species confined to dynamic patches, we fitted a Bayesian incidence function model extended for dynamic landscapes to snapshot data on five epiphytic lichens among 2083 mapped oaks (dynamic patches). We estimate the age at which trees become suitable patches for different species, which defines their niche breadth (number of suitable trees). We show that the colonization rates were generally low, but increased with increasing connectivity in accordance with metapopulation theory. The rates were related to species traits, and we show, for the first time, that they are higher for species with wide niches and small dispersal propagules than for species with narrow niches or large propagules. We also show frequent long-distance dispersal in epiphytes by quantifying the relative importance of local dispersal and background deposition of dispersal propagules. Local stochastic extinctions from intact trees were negligible in all study species, and thus, the extinction rate is set by the rate of patch destruction (tree fall). These findings mean that epiphyte metapopulations may have slow colonization-extinction dynamics that are explained by connectivity, species traits, and patch dynamics.  相似文献   
20.
This article is based on 2 studies. The aim of the first study was to examine the differences in occupational accident frequency between the 2 main language groups in Finland. Based on 3 independent statistical data sets, it was shown that Swedish-speaking workers had about 40% fewer occupational accidents than Finnish-speaking workers. The aim of the second study was to confirm the difference at company level. A field study in the province of Vaasa with 14 small and medium-sized manufacturing companies revealed that the accident frequency of Swedish-speaking workers was 21% lower than that of Finnish-speaking workers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号