首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   3篇
  国内免费   11篇
安全科学   4篇
废物处理   11篇
环保管理   15篇
综合类   32篇
基础理论   10篇
污染及防治   50篇
评价与监测   16篇
社会与环境   4篇
灾害及防治   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2016年   11篇
  2015年   7篇
  2014年   8篇
  2013年   11篇
  2012年   11篇
  2011年   10篇
  2010年   5篇
  2009年   8篇
  2008年   5篇
  2007年   16篇
  2006年   7篇
  2005年   7篇
  2004年   10篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
71.
Congenital epulis is a benign intraoral tumor that has rarely been diagnosed prenatally. We report a fetus with congenital epulis diagnosed by three-dimensional (3-D) ultrasound and fetal magnetic resonance imaging (MRI) at 35 weeks' gestation. We show an image of congenital epulis using a new ultrasound technique, the 3-D multislice view, which shows images similar to CT or MRI. This is a short case report of congenital epulis diagnosed prenatally by 3-D ultrasound using multislice view and MRI. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
72.
The Triad Approach was field‐tested to determine if characterization objectives could be met for a brownfields property that had been identified as a future elementary school site. The new school is in response to a New Jersey Supreme Court ruling (the Abbott decision) that directed the state of New Jersey to fund school construction in poorer districts to expand physical facilities to relieve overcrowding. The Triad Approach is promoted by the United States Environmental Protection Agency as a process that has the potential to improve the timeliness and efficiency of site characterization, and the New Jersey Department of Environmental Protection (NJDEP) recently issued a policy statement supporting its potential. Aggressive school construction deadlines are contingent on property acquisitions that are relatively faster than the traditional investigatory process. In addition, given the future sensitive population, the investigations must be thorough. This case study is among the first studies to document the use of the Triad Approach for a future school site. The Triad Approach was used to define site conditions for six areas of concern in a two‐month time frame (from the start of the planning process to completed investigation). © 2004 Wiley Periodicals, Inc.  相似文献   
73.
74.
The aim of this study was to isolate and characterize Bacillus cereus bacteriophages of various origins. Twenty-seven bacteriophages against B. cereus were isolated from various Korean traditional fermented foods and soils. Plaque size, transmission electron microscopy, virulence profile, and in vitro lytic activity of bacteriophage isolates were examined. Transmission electron microscopy confirmed B. cereus bacteriophages belonging to the family Siphoviridae. Among B. cereus bacteriophages with broad host range, 18 isolates (66.7%) did not harbor any B. cereus virulence factors. Among them, bacteriophage strain CAU150036, CAU150038, CAU150058, CAU150064, CAU150065, and CAU150066 effectively inhibited B. cereus in vitro within 1 h. Therefore, they are considered potential candidates for controlling the contamination of B. cereus in food or other applications.  相似文献   
75.
Noroviruses are major causative pathogen of nonbacterial acute gastroenteritis worldwide. Of the seven genogroups of noroviruses suggested recently, genogroup II genotype 4 (GII.4) had been the most common genotype identified in hospitalized patients in the last few decades. However, since the latter half of 2014, new variants of GII.17 have been reported as the main causes of outbreaks over GII.4 in East Asia and have also occurred in America and Europe. In this study, we monitored norovirus GII in coastal streams at South Gyeongsang province and South Jeolla province of South Korea from March 2015 to May 2016. Norovirus GII.17 capsid sequences were predominantly detected until September 2015 in water samples. However, we found that the number of positive cases of the norovirus GII.4 Sydney 2012 capsid sequence has been increasing since December 2015, overtaking that of GII.17 in 2016. The RdRp genotype of this predominant GII.4 variant in 2016 was identified as GII.P16. The emergence and predominance of the GII.4 pandemic capsid sequence harboring a different RdRp genotype suggested the potential for a future pandemic.  相似文献   
76.
Indoor air quality (IAQ) directly affects the health of occupants. Household manufacturing equipment (HME) used for hobbies or educational purposes is a new and unexplored source of air pollution. In this study, we evaluated the characteristics of particulate and gaseous pollutants produced by a household laser processing equipment (HLPE). Various target materials were tested using a commercial HLPE under various operating conditions of laser power and sheath air flow rate. The mode diameters of the emitted particles gradually decreased as laser power increased, while the particle number concentration (PNC) and particle emission rate (PER) increased. In addition, as the sheath air flow rate quadrupled from 10 to 40 L/min, the mode diameter of the emitted particles decreased by nearly 25%, but the effect on the PNC was insignificant. When the laser induced the target materials at 53 mW, the mode diameters of particles were <150 nm, and PNCs were >2.0 × 104 particles/cm3. Particularly, analyses of sampled aerosols indicated that harmful substances such as sulfur and barium were present in particles emitted from leather. The carcinogenic gaseous pollutants such as acrylonitrile, acetaldehyde, 1,3-butadiene, benzene, and C8 aromatics (ethylbenzene) were emitted from all target materials. In an actual indoor environment, the PNC of inhalable ultrafine particles (UFPs) was >5 × 104 particles/cm3 during 30 min of HLPE operation. Our results suggest that more meticulous control methods are needed, including the use of less harmful target materials along with filters or adsorbents that prevent emission of pollutants.  相似文献   
77.
The diurnal vertical migration of Cochlodinium polykrikoides (C. polykrikoides), which caused a red tide in the Korean coastal waters of the East Sea/Sea of Japan in September 2003, was examined by determining the time-dependent changes in the density of living cells in relation to the depth of the water column. The ascent of this species into the surface layer (depth of water 2 m) occurred during 1400-1500. The descent started at 1600 and a high distribution rate (86%) at 15-20 m was observed at 0300. During the ascent, the cells were widely distributed at each depth level from 0600 hr and at 0800-1100, the cells were primarily distributed in the middle layer (0-6 m). The concentration of dissolved inorganic nitrogen was generally < or = 2.86 micromol l(-1), but at 1400-1500, the concentration in the surface layer reduced to < or = 0.14 micromol l(-1). Moreover, the concentration gradually increased as the depth increased to > or = 5 m. These results showed that the nutrient-consumption rate associated with the proliferation of C. polykrikoides during a red tide is more influenced by the inorganic-nitrogen resources ratherthan the inorganic-phosphorus compounds.  相似文献   
78.
Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process might lead to the high concentration of total nitrogen (T-N) impact on the effluent water quality. The objective of this study is to establish two machine learning models—artificial neural networks (ANNs) and support vector machines (SVMs), in order to predict 1-day interval T-N concentration of effluent from a wastewater treatment plant in Ulsan, Korea. Daily water quality data and meteorological data were used and the performance of both models was evaluated in terms of the coefficient of determination (R2), Nash–Sutcliff efficiency (NSE), relative efficiency criteria (drel). Additionally, Latin-Hypercube one-factor-at-a-time (LH-OAT) and a pattern search algorithm were applied to sensitivity analysis and model parameter optimization, respectively. Results showed that both models could be effectively applied to the 1-day interval prediction of T-N concentration of effluent. SVM model showed a higher prediction accuracy in the training stage and similar result in the validation stage. However, the sensitivity analysis demonstrated that the ANN model was a superior model for 1-day interval T-N concentration prediction in terms of the cause-and-effect relationship between T-N concentration and modeling input values to integrated food waste and waste water treatment. This study suggested the efficient and robust nonlinear time-series modeling method for an early prediction of the water quality of integrated food waste and waste water treatment process.  相似文献   
79.
Lee Y  Jeong J  Lee C  Kim S  Yoon J 《Chemosphere》2003,51(9):901-912
The influence of various reaction parameters on herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) removal were examined in the photo/ferrioxalate/H(2)O(2) system, with regard to: (1) sulfate, phosphate, and z.rad;OH scavenger, as solution constituent; and (2) light intensity, ferrioxalate, H(2)O(2), and oxalate concentration, as operating parameter. In terms of 2,4-D removal, the photo/ferrioxalate/H(2)O(2) system has always been superior to the photo/Ferric ion/H(2)O(2) system, despite the high presence of anions (sulfate 100 mM, phosphate 1 mM) or z.rad;OH scavenger. Not only the rate of 2,4-D removal, but also the decomposition rate of H(2)O(2) and oxalate proportionally increase with light intensity. The ferrioxalate concentration determines the light absorption fraction, and thus, controls the rates of 2,4-D removal, and the decomposition of H(2)O(2) and oxalate, are predicted from kinetic formulations. The optimal concentration of H(2)O(2) and oxalate, according to the extent of the z.rad;OH scavenging reaction with these reagents, has been demonstrated for 2,4-D removal. It was found that an increasing oxalate concentration, which bears the burden of increased dissolved organic carbon (DOC), does not occur. This is because its decomposition, as a result of the photochemical reduction of the ferric oxalate complex, results in a decrease of the equivalent DOC. The importance of the key reaction factors to be considered, when applying this system to real wastewater treatment, is also discussed.  相似文献   
80.
Kim K  Jeong GY 《Chemosphere》2005,58(10):1399-1408
Factors regulating the occurrence of fluoride in groundwater were investigated using natural isotope tracers and geochemical data in the southeastern part of Korea where about 10% of the total public water-supply wells (n=422) inspected in this study had fluoride levels exceeding the drinking water limit of Korea (1.5 mg/l). The F-rich public wells are mostly distributed along the major faults, especially in the terrain of the F-rich granitic rocks. The stable isotope analysis results provide substantial information for the relative ages of groundwaters. It is revealed that the F-rich groundwaters are deeply circulating paleogroundwaters and occur along the faults due to upward flow along the fault plane. While reacting with granitic rocks for a prolonged period, the F concentrations of groundwater are continuously enriched even after the groundwater reaches an equilibrium state with respect to fluorite (CaF2) due to removal of Ca by precipitation of calcite (CaCO3). These observations reflect that rock chemistry, groundwater age, well depth, and geologic structure are the important factors controlling the occurrence of high F groundwaters. However, high F groundwaters are rarely observed in the fault zones where the associated fractures are widely developed. Isotopic signature provides an evidence for deep penetration of recently recharged groundwater into the wide fault zone, indicating that the hydrologic condition of the fault is also an important factor controlling the occurrence of high F groundwaters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号