首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   0篇
  国内免费   2篇
安全科学   7篇
废物处理   12篇
环保管理   14篇
综合类   31篇
基础理论   40篇
环境理论   1篇
污染及防治   58篇
评价与监测   19篇
社会与环境   18篇
灾害及防治   2篇
  2023年   5篇
  2022年   6篇
  2021年   4篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2017年   7篇
  2016年   12篇
  2015年   8篇
  2014年   13篇
  2013年   21篇
  2012年   11篇
  2011年   14篇
  2010年   9篇
  2009年   15篇
  2008年   15篇
  2007年   6篇
  2006年   10篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1967年   1篇
排序方式: 共有202条查询结果,搜索用时 0 毫秒
201.
Arctic warming is causing ancient perennially frozen ground (permafrost) to thaw, resulting in ground collapse, and reshaping of landscapes. This threatens Arctic peoples'' infrastructure, cultural sites, and land-based natural resources. Terrestrial permafrost thaw and ongoing intensification of hydrological cycles also enhance the amount and alter the type of organic carbon (OC) delivered from land to Arctic nearshore environments. These changes may affect coastal processes, food web dynamics and marine resources on which many traditional ways of life rely. Here, we examine how future projected increases in runoff and permafrost thaw from two permafrost-dominated Siberian watersheds—the Kolyma and Lena, may alter carbon turnover rates and OC distributions through river networks. We demonstrate that the unique composition of terrestrial permafrost-derived OC can cause significant increases to aquatic carbon degradation rates (20 to 60% faster rates with 1% permafrost OC). We compile results on aquatic OC degradation and examine how strengthening Arctic hydrological cycles may increase the connectivity between terrestrial landscapes and receiving nearshore ecosystems, with potential ramifications for coastal carbon budgets and ecosystem structure. To address the future challenges Arctic coastal communities will face, we argue that it will become essential to consider how nearshore ecosystems will respond to changing coastal inputs and identify how these may affect the resiliency and availability of essential food resources.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01666-z.  相似文献   
202.

Objective

To evaluate fetal brain development using MRI (magnetic resonance imaging) in CDH (congenital diaphragmatic hernia).

Methods

52 isolated left CDH and 104 control fetuses were imaged using MRI. Brain morphometry (Biparietal diameter—BPD, brain fronto-occipital diameter—BFOD, third ventricle, posterior ventricles, transcerebellar diameter—TCD, anteroposterior and craniocaudal cerebellar vermis diameter—AP and CC) and cortical structures (bilateral cingulate fissure—CF, insular fissure—IF, insular depth - ID) were compared with controls using Mann–Whitney test.

Results

Median gestational age at MRI (p = 0.95)and the median biparietal diameter (p = 0.737) were comparable. Among morphometric parameters, only the brain fronto-occipital diameter was significantly smaller in CDH (p = 0.001) and the third ventricle was significantly greater in CDH (<0.0001). Among cortical structures, the cingulate and insular fissures were significantly deeper in CDH fetuses (p < 0.0001) as the insular depth ID was smaller in CDH (p < 0.03).

Conclusions

CDH fetuses have a smaller fronto-occipital diameter, reduced insular depth, deeper cingulate and insular fissure, and greater third ventricle width as compared to controls. These findings suggest that left CDH may have an impact on fetal brain development with an overall reduction in brain volume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号