首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4034篇
  免费   100篇
  国内免费   53篇
安全科学   250篇
废物处理   153篇
环保管理   831篇
综合类   468篇
基础理论   1007篇
环境理论   3篇
污染及防治   956篇
评价与监测   312篇
社会与环境   166篇
灾害及防治   41篇
  2023年   31篇
  2022年   41篇
  2021年   46篇
  2020年   57篇
  2019年   70篇
  2018年   85篇
  2017年   123篇
  2016年   140篇
  2015年   109篇
  2014年   134篇
  2013年   351篇
  2012年   185篇
  2011年   236篇
  2010年   183篇
  2009年   203篇
  2008年   210篇
  2007年   221篇
  2006年   205篇
  2005年   178篇
  2004年   156篇
  2003年   138篇
  2002年   136篇
  2001年   97篇
  2000年   69篇
  1999年   63篇
  1998年   48篇
  1997年   64篇
  1996年   50篇
  1995年   54篇
  1994年   56篇
  1993年   46篇
  1992年   39篇
  1991年   31篇
  1990年   29篇
  1989年   27篇
  1988年   23篇
  1987年   17篇
  1986年   17篇
  1985年   23篇
  1984年   18篇
  1983年   28篇
  1982年   22篇
  1981年   32篇
  1980年   19篇
  1979年   18篇
  1978年   13篇
  1977年   5篇
  1976年   6篇
  1975年   5篇
  1969年   4篇
排序方式: 共有4187条查询结果,搜索用时 0 毫秒
111.
ABSTRACT: A spatial linear program that strategically arranges and schedules forest treatments so as to meet peak stormflow objectives is formulated and demonstrated. The approach uses simulated spatial routing of stormflows nested as short‐term time schedules within longer‐term forest planning time periods. A simple case example is used to demonstrate the formulation and explore its spatial sensitivity.  相似文献   
112.
Comparison between the number of taxa observed and the number expected in the absence of human impact is an easily understood and ecologically meaningful measure of biological integrity. This approach has been successfully applied to the assessment of the biological quality of flowing water sites using macroinvertebrates with the river invertebrate and classification system (RIVPACS) and its derivatives. In this paper, we develop a method similar to the RIVPACS predictive model approach to assess biological integrity at flowing-water sites using freshwater fish and decapod assemblages. We extend the RIVPACS approach by avoiding the biotic classification step and model each of the individual species separately. These assemblages were sampled at 118 least impacted (reference) sites in the Auckland region, New Zealand. Individual discriminant models based on the presence or absence of the 12 most common fish and decapod species were developed. Using the models, predictions were made using environmental measures at new sites to yield the probability of the capture of each of the 12 species, and these were combined to predict the assemblage expected at sites. The expected assemblage was compared to that observed using an observed over expected ratio (O/E). The models were evaluated using a number of internal tests including jackknifing, data partitioning, and the degree to which O/E values differed between reference sites and a set of sites perceived to be impaired by human impacts.  相似文献   
113.
Dissipation of sulfometuron (SM), methyl 2-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl] benzoate, in streamflow, sediment, plant tissue, litter, and soil following operational forestry applications at the target rate of 0.42 kg a.i. ha(-1) was monitored. Streamflow samples were collected at a weir on the perimeter and 30, 60, and 150 m downstream from the perimeter of the application site. Sulfometuron was detected in streamflow at low levels up to 29 days after treatment (DAT) on the watershed treated with the 75% dispersible granule formulation (Oust; DuPont Chemical Company, Wilmington, DE) and less than 53 DAT on the watershed treated with the experimental formulation (1% pellet). Twenty-four-hour average SM concentration in water ranged from not detected to a maximum of 49.3 microg L(-1). Sulfometuron was not detected at quantifiable levels (1 microg L(-1)) 150 m downstream. Stream sediment, vegetation, litter, and soil were sampled periodically up to 180 DAT. All samples were analyzed for SM by high performance liquid chromatography. Sulfometuron dissipated from these watersheds with half-lives that ranged from 4 d in plant tissues to 33 d in soil. Acidic soil solution on these treated watersheds contributed to their rapid dissipation. Environmental impacts are discussed for these watersheds in the context of available toxicological data.  相似文献   
114.
The sensitivity of Scenedesmus subspicatus against potassium dichromate is positively correlated to the photon flux density during the algal growth inhibition test. Low photon flux densities led to significantly reduced maximum effects and higher EC50 levels. To improve the testing of colored substances, we distinguished between the toxic effect (chemical part, represented by potassium dichromate) and the shading effect (physical part, simulated by reduced light intensities during the test) of a hypothetical light absorbing substance. The contribution of these single effects to the total inhibition varied greatly. At high concentrations of potassium dichromate (1.6 and 3.2 mg L(-1)) the physical part never exceeded 25% of the total inhibition, not even at strongest light reduction, while at low concentrations (0.2 and 0.4 mg L(-1)) the physical effect became more prominent when halving the amount of available light. Further, the combination effect of the chemical and the physical effect could be calculated well only by using the concept of independent action. Thus, if chemical and physical effects are measured in combination, as is the case in tests with dye-stuffs, the current test protocol for the algal growth inhibition test may lead to incorrect estimations of the toxic potential.  相似文献   
115.
Reducing pesticide loads in surface waters implies identifying the pathways responsible for the pollution. The current study documents the pesticide contamination of the river Zwester Ohm, a 4917-ha catchment in Germany with 41% of the land used for crop production. Discharges and concentrations of 19 pesticides were measured continuously at three locations for 15 mo. The load detected at the outlet of the catchment amounted to 9048 g a.i. The losses represent 0.22% of the pesticides applied by the farmers. The contamination showed a seasonal pattern following the pesticide application times. The wastewater treatment plant system (WWTPS) in the catchment (two wastewater treatment plants [WWTP], 14 combined sewer overflows (CSO), four CSO tanks) emits during dry weather periods purified sewage and during storm events sewage mixed with stormwater runoff into the river. The contribution by the WWTPS to the pesticide load was defined as point-source pollution (PSP). The load was dominated by PSP with at least 77% of the total pollution. No significant interdependencies between intrinsic properties of the pesticides, hydrometeorological factors, and the loads occurring in the stream could be found. Therefore, it is not possible to predict PSP for other catchments based on the results from this study. Whereas 65% of the total load entered the river via the WWTP, a portion of 12% was attributed to the CSO. The study points out that the influence of CSO on PSP should be taken into account in future catchment studies in areas with comparable agricultural structure.  相似文献   
116.
Few studies exist on how chloride from chloride‐based deicers is transported in infiltration‐based stormwater control measures. In 2009, the U.S. Environmental Protection Agency (USEPA) constructed a 0.4 ha parking lot in Edison, New Jersey, that was surfaced with permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). Each surface type has four equally sized, lined sections that direct all infiltrate to separate 5.7 m3 collection tanks. The USEPA acute criterion for aquatic life (860 mg/l) was exceeded in events immediately following a snow event. Concentrations of the infiltrate exceeded the detection limit (5 mg/l) year round but did not exceed the USEPA chronic toxicity (230 mg/l) after April. The chloride concentration decreased with cumulative rainfall since previous snow event, and a power regression described this relationship. In the power regression, the coefficient (b) described the initial concentration following a snow event, and the exponent (m) described the rate in which chloride was flushed through the system with infiltrating water. PC had the largest coefficient (5,664) and largest absolute exponent (?0.92), followed closely by PICP (= 4,943 and = ?0.87), and distantly by PA (= 2,907 and = ?0.67). The differences in release rate were proportional to the measured surface infiltration rates of 4,000; 2,400; and 200 cm/h for PC, PICP, and PA, respectively. These results will assist those who manage or regulate stormwater where receiving waters are chloride impaired.  相似文献   
117.
Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in hydrological modeling; however, these data have not been fully evaluated across a range of conditions. We compared four gridded datasets (Daily Surface Weather and Climatological Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land Data Assimilation System [GLDAS], and Parameter‐elevation Regressions on Independent Slopes Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model performance when compared with a gauged dataset, Global Historical Climatology Network‐Daily (GHCN‐D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN‐D, whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in streamflow simulation. For stations with complete data, GHCN‐D based SWAT‐simulated streamflow variability better than gridded precipitation data. During low flow periods we found PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow years. Our results demonstrate that combining gridded precipitation sources with gauge‐based measurements can improve hydrologic model performance, especially for extreme events.  相似文献   
118.
Nitrogen and phosphorus criteria were developed for 233 km of the Yellowstone River, one of the first cases where a mechanistic model has been used to derive large river numeric nutrient criteria. A water quality model and a companion model which simulates lateral algal biomass across transects were used to simulate effects of increasing nutrients on five variables (dissolved oxygen, total organic carbon, total dissolved gas, pH, and benthic algal biomass in depths ≤1 m). Incremental increases in nutrients were evaluated relative to their impact on predefined thresholds for each variable; the first variable to exceed a threshold set the nutrient criteria. Simulations were made at a low flow, the 14Q5 (lowest average 14 consecutive day flow, July‐September, recurring one in five years), which was derived using benthic algae growth curves and EPA guidance on excursion frequency. An extant climate dataset with an annual recurrence was used, and tributary water quality and flows were coincident with the river's 10 lowest flow years. The river had different sensitivities to nutrients longitudinally, pH being the most sensitive variable in the upstream reach and algal biomass in the lower. Model‐based criteria for the Yellowstone River are as follows: between the Bighorn and Powder river confluences, 55 μg TP/l and 655 μg TN/l; from the Powder River confluence to Montana state line, 95 μg TP/l and 815 μg TN/l. Pros and cons of using steady‐state models to derive river nutrient criteria are discussed.  相似文献   
119.
The Storm Water Management Model was used to simulate runoff and nutrient export from a low impact development (LID) watershed and a watershed using traditional runoff controls. Predictions were compared to observed values. Uncalibrated simulations underpredicted weekly runoff volume and average peak flow rates from the multiple subcatchment LID watershed by over 80%; the single subcatchment traditional watershed had better predictions. Saturated hydraulic conductivity, Manning's n for swales, and initial soil moisture deficit were sensitive parameters. After calibration, prediction of total weekly runoff volume for the LID and traditional watersheds improved to within 12 and 5% of observed values, respectively. For the validation period, predicted total weekly runoff volumes for the LID and traditional watersheds were within 6 and 2% of observed values, respectively. Water quality simulation was less successful, Nash–Sutcliffe coefficients >0.5 for both calibration and validation periods were only achieved for prediction of total nitrogen export from the LID watershed. Simulation of a 100‐year, 24‐h storm resulted in a runoff coefficient of 0.46 for the LID watershed and 0.59 for the traditional watershed. Results suggest either calibration is needed to improve predictions for LID watersheds or expanded look‐up tables for Green–Ampt infiltration parameter values that account for compaction of urban soil and antecedent conditions are needed.  相似文献   
120.
In the United States, many state and federally funded conservation programs are required to quantify the water quality benefits resulting from their efforts. The objective of this research was to evaluate the impact of conservation practices subsidized by the Oklahoma Conservation Commission on phosphorus and sediment loads to Lake Wister. Conservation practices designed to increase vegetative cover in grazed pastures were evaluated using Landsat imagery and the Soil and Water Assessment Tool (SWAT). Several vegetative indices were derived from Landsat imagery captured before and after the implementation of conservation practices. Collectively, these indicators provided an estimate of the change in vegetative soil cover attributable to conservation practices in treated fields. Field characteristics, management, and changes in vegetative cover were used in the SWAT model to simulate sediment and phosphorus losses before and after practice implementation. Overall, these conservation practices yielded a 1.9% improvement in vegetative cover and a predicted sediment load reduction of 3.5%. Changes in phosphorus load ranged from a 1.0% improvement to a 3.5% increase, depending upon initial vegetative conditions. The use of fertilizers containing phosphorus as a conservation practice in low-productivity pastures was predicted by SWAT to increase net phosphorus losses despite any improvement in vegetative cover. This combination of vegetative cover analysis and hydrologic simulation was a useful tool for evaluating the effects of conservation practices at the basin scale and may provide guidance for the selection of conservation measures subsidized in future conservation programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号