首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   1篇
  国内免费   1篇
安全科学   1篇
环保管理   13篇
综合类   11篇
基础理论   14篇
污染及防治   13篇
评价与监测   7篇
社会与环境   2篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   3篇
  2007年   3篇
  2005年   4篇
  2004年   1篇
  2002年   4篇
  2001年   1篇
  1994年   2篇
  1971年   1篇
  1915年   1篇
排序方式: 共有61条查询结果,搜索用时 46 毫秒
21.
Identification of minimally disturbed reference sites is a critical step in developing precise and informative ecological indicators. We tested procedures to select reference sites, and quantified natural variation (inter-site and -annual variability) among reference conditions using a macroinvertebrate data set collected from 429 mediterranean-climate stream reaches in the San Francisco Bay Area, California (USA). We determined that a landscape GIS-based stressor screen followed by a local field-based stressor screen effectively identified least-disturbed reference sites that, based on NMS ordination results, supported different biological communities than sites identified with only landscape (GIS) or local (field) stressors. An examination of least-disturbed reference sites indicated that inter-site variability was strongly associated with stream hydrology (i.e., perennial vs. non-perennial flow) and annual precipitation, which highlights the need to control for such variation when developing biological indicators through natural gradient modeling or using unique biological indicators for both non-perennial and perennial streams. Metrics were more variable among non-perennial streams, indicating that additional modeling may be needed to develop precise biological indicators for non-perennial streams. Among 192 sites sampled two to six times over the 8-year study period, the biological community showed moderate inter-annual variability, with the 100 point index of biotic integrity scores varying from 0 to 51 points (mean = 11.5). Variance components analysis indicated that inter-annual variability explained only a fraction (5–18 %) of the total variation when compared against site-level variation; thus efforts to understand causes of natural variation between sites will produce more precise and accurate biological indicators.  相似文献   
22.
Clearing for large-scale soy production and the displacement of cattle-breeding by soybeans are major features of land-use change in the lowland Amazon that can alter hydrologic properties of soils and the runoff generation over large areas. We measured infiltrability and saturated hydraulic conductivity (Ksat) under natural forest, pasture, and soybeans on Oxisols in a region of rapid soybean expansion in Mato Grosso, Brazil. The forest-pasture conversion reduced infiltrability from 1258 to 100 mm/h and Ksat at all depths. The pasture-soy conversion increased infiltrability from 100 to 469 mm/h (attributed to shallow disking), did not affect Ksat at 12.5 cm, but decreased Ksat at 30 cm from 122 to 80 mm/h, suggesting that soybean cultivation enhances subsoil compaction. Permeability decreased markedly with depth under forest, did not change under pasture, and averaged out at one fourth the forest value under soybeans with a similar pattern of anisotropy. Comparisons of permeability with rainfall intensities indicated that land-use change did not alter the predominantly vertical water movement within the soil. We conclude that this landscape is well buffered against land-use changes regarding near-surface hydrology, even though short-lived ponding and perched water tables may occur locally during high-intensity rainfall on pastures and under soybeans.  相似文献   
23.
Sustainable production and biodiversity conservation can be mutually supportive in providing multiple ecosystem services to farmers and society. This study aimed to determine the contribution of agroforestry systems, as tested by family farmers in the Brazilian Rainforest region since 1993, to tree biodiversity and evaluated farmers’ criteria for tree species selection. In addition, long-term effects on microclimatic temperature conditions for coffee production and chemical and biological soil characteristics at the field scale were compared to full-sun coffee systems. A floristic inventory of 8 agroforests and 4 reference forest sites identified 231 tree species in total. Seventy-eight percent of the tree species found in agroforests were native. The variation in species composition among agroforests contributed to a greater γ-diversity than α-diversity. Monthly average maximum temperatures were approximately 6 °C higher in full-sun coffee than in agroforests and forests. Total soil organic C, N mineralization and soil microbial activity were higher in forests than in coffee systems, whereas the chemical and biological soil quality in agroforests did not differ significantly from full-sun coffee after 13 years. Given its contribution to the conservation of biodiversity and its capacity to adapt coffee production to future climate change, coffee agroforestry offers a promising strategy for the area.  相似文献   
24.
The quality of highway pavement is greatly influenced by the subgrade materials, the general geology of the area, and the materials used for construction. Investigation into the 75-km Nsukka-Adoru-Idah highway revealed that the pavement was underlain by three lithological units—Imo, Nsukka, and Ajali formations. The geotechnical evaluation carried out in the study includes the particle size distribution, Atterberg limit, specific gravity, compaction tests, and California bearing ratio (CBR). The base course has clay/silt (7–14%), fine sand (1–4%), medium sand (6–13%), and coarse sand (65–86%), while the subgrade presented clay/silt (74–82%), fine sand (6–9%), medium sand (10–17%), and coarse sand (1–3%). The average specific gravity results for the studied base course and subgrades are 2.58 and 2.52. Liquid limit (LL) result ranges from 27 to 60%, while plastic limit (PL) ranges between 17 and 24%, and plasticity index (PI) ranges from 5 to 39%. The maximum dry density (MDD) result ranges from 1.70 to 2.10 mg/m3, while the optimum moisture content (OMC) for the samples ranges between 14.1 and 18.0%. The CBR result for soaked and unsoaked samples ranges from 37 to 74 and 48 to 83%, respectively. The low unsoaked CBR (<80%) and high Atterberg limits (LL > 30% and PI > 12%) failed the stipulated Nigerian standard, signifying the need for stabilization. A geotechnical model of a highway road cut generated a factor of safety of 1.45, indicating possibility of slope failure.  相似文献   
25.
Pharmacopollution is a public health and environmental outcome of some active pharmaceutical ingredients (API) and endocrine-disrupting compounds (EDC) dispersed through water and/or soil. Its most important sources are the pharmaceutical industry, healthcare facilities (e.g., hospitals), livestock, aquaculture, and households (patients’ excretion and littering). The last source is the focus of this article. Research questions are “What is the Household Waste Medicine (HWM) phenomenon?”, “How HWM and pharmacopollution are related?”, and “Why is a reverse logistic system necessary for HWM in Brazil?” This article followed the seven steps proposed by Rother (2007) for a systematic review based on the Cochrane Handbook and the National Health Service (NHS) Center for Reviews Dissemination (CDR) Report. The HWM phenomenon brings many environmental, public health, and, social challenges. The insufficient data is a real challenge to assessing potential human health risks and API concentrations. Therefore, the hazard of long-term exposure to low concentrations of pharmacopollutants and the combined effects of API mixtures is still uncertain. HWM are strongly related to pharmacopollution, as this review shows. The Brazilian HWM case is remarkable because it is the fourth pharmaceutical market (US$ 65,971 billion), with a wide number of private pharmacies and drugstores (3.3: 10,000 pharmacy/inhabitants), self-medication habits, and no national take-back program. The HWM generation is estimated in 56.6 g/per capita, or 10,800 t/year. The absence of a reverse logistics for HWM can lead to serious environmental and public health challenges. The sector agreement for HWM is currently under public consultation.  相似文献   
26.
Removal of volatile sulphur compounds from livestock waste air by biological air filtration may be enhanced by application of packing materials with reactive properties. In this study, light expanded clay aggregates (Leca®) was tested with respect to sorption and potential chemical degradation of H2S, Methanethiol (MT) and Dimethyl sulphide (DMS). Leca was selected due to its content of minerals, including iron, and due to its high specific surface area. The performance of Leca was evaluated based on breakthrough curves and by comparing the difference between the inlet and outlet gas concentrations. Whereas DMS did not appear to be removed by Leca, both H2S and MT were removed with variable efficiency depending on the specific conditions. Dimethyl disulphide (DMDS) and dimethyl trisulphide (DMTS) were demonstrated to be produced during the degradation process in relatively high yields. A comparison between ambient air and nitrogen gas conditions showed that the chemisorption of H2S and MT did not necessarily need oxygen to be present. X-ray analysis of Leca showed an abundance of Fe2O3. It is therefore hypothesized that Fe2O3 in Leca can remove H2S and MT by chemisorption. Both air velocity and moisture content clearly affected the capacity of Leca for removal of H2S and MT. Lower removal is seen at higher air velocities, whereas higher moisture content enhances removal. However, chemisorption of MT by Leca appears to be limited above a threshold moisture level. Potential reaction mechanisms are discussed in relation to the observed effects. The results implicate that Leca can be used as a filter material with reactive properties provided that moisture content is controlled and that an adequate air velocity is used.  相似文献   
27.
This paper evaluates the results of contamination of residents and residential homes located in close proximity to a Wood Treatment Plant. The plant has produced treated wood products continuously since 1904. The principle chemicals used to treat the wood, which is primarily used for railroad ties (oblong objects laid perpendicular to the rails to act as a base for the tracks), are creosote and pentachlorophenol. For a number of years, the plant burned treated waste wood products containing creosote and pentachlorophenol. First the plant pressure impregnates the wood with creosote and pentachlorophenol, and then the wood is stacked on open ground to allow it to air dry. Chemicals from recently treated wood ties are allowed to evaporate into the air or drip onto the ground surrounding the stacked wood. Small drainage ditches carry the liquid wastes into larger water channels where eventually the waste streams are discharged into a river adjacent to the plant. The river serves as a source of drinking water for the nearby community. Prevailing wind patterns favor a drift of air emissions from the plant's boiler stack over the nearby community and its residents. Over the past few years, the town's residents have become increasingly concerned about their health status and have voiced concerns regarding multiple health problems (including cancer), possibly associated with plant discharges. The intention of this study is to examine a representative sample of the potentially affected residents and to evaluate their residential environment for the presence of dioxin and/or its congeners. Data obtained from EPA's Toxic Release Information (TRI) database revealed the plant routinely discharged creosote, pentachlorophenol, dioxin and dioxin-like compounds into the ambient air via fugitive air emissions and surface waste waters. Sampling of household dust and water sediment within and outside of residences within a 2-mile radius of the plant revealed the presence of significantly elevated levels of dioxins, principally octachlorodibenzo-p-dioxin (OCDD) and 1,2,3,4,6,7,8-hepta-CDD. Biomonitoring of 29 subjects identified the presence of significantly elevated chlorinated dioxins and furan levels (OCDD=1049 ppt for exposed and 374 ppt for controls and 1,2,3,4,6,7,8-hepta CDD=132 ppt for exposed and 45.1 ppt for controls). These levels are consistent with exposures to pentachlorophenol in this group of subjects. And they confirm the presence of unsafe levels of chlorinated dioxins in these persons.  相似文献   
28.
29.
Abstract: Valid modeling of habitats and populations of Greater Sage-Grouse ( Centrocercus urophasianus) is a critical management need because of increasing concern about population viability. Consequently, we evaluated the performance of two models designed to assess landscape conditions for Greater Sage-Grouse across 13.6 million ha of sagebrush steppe in the interior Columbia Basin and adjacent portions of the Great Basin of the western United States (referred to as the basin). The first model, the environmental index model, predicted conditions at the scale of the subwatershed (mean size of approximately 7800 ha) based on inputs of habitat density, habitat quality, and effects of human disturbance. Predictions ranged on a continuous scale from 0 for lowest environmental index to 2 for optimal environmental index. The second model, the population outcome model, predicted the composite, range-wide conditions for sage grouse based on the contribution of environmental index values from all subwatersheds and measures of range extent and connectivity. Population outcomes were expressed as five classes (A through E) that represented a gradient from continuous, well-distributed populations (outcome A) to sparse, highly isolated populations with a high likelihood of extirpation (outcome E). To evaluate performance, we predicted environmental index values and population outcome classes in areas currently occupied by sage grouse versus areas where extirpation has occurred. Our a priori expectations were that models should predict substantially worse environmental conditions ( lower environmental index) and a substantially higher probability of extirpation ( lower population outcome class) in extirpated areas. Results for both models met these expectations. For example, a population outcome of class E was predicted for extirpated areas, as opposed to class C for occupied areas. These results suggest that our models provided reliable landscape predictions for the conditions tested. This finding is important for conservation planning in the basin, where the models were used to evaluate management of federal lands for sage grouse.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号