首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
环保管理   1篇
综合类   48篇
基础理论   4篇
污染及防治   10篇
评价与监测   3篇
灾害及防治   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1993年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1969年   3篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   2篇
  1964年   2篇
  1963年   1篇
  1961年   2篇
  1960年   2篇
  1959年   2篇
  1958年   1篇
  1957年   1篇
  1956年   2篇
  1955年   1篇
  1953年   1篇
  1952年   2篇
  1940年   1篇
  1936年   1篇
  1931年   2篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
31.
32.
33.
34.
The effects of oxygen limitation on solid-bed bioleaching of heavy metals (Me) were studied in a laboratory percolator system using contaminated sediment supplemented with 2% elemental sulfur (So). Oxygen limitation was realized by controlling the gas flow and oxygen concentration in the aeration gas. The oxygen supply varied between 150 and 0.5 mol So (-1) over 28 d of leaching. Moderate oxygen limitation led to temporarily suppression of acidification, rate of sulfate generation and Me solubilization. Lowering the oxygen supply to 0.5 mol O2 mol So (-1) resulted in retarding acidification over a period of three weeks and in poor Me solubilization. Oxidation of So occurred even under strong oxygen limitation at a low rate. High surplus of oxygen was necessary for almost complete oxidation of the added So. The maximum Me solubilization was reached at an oxygen supply of 7.5 mol O2 mol So (-1). Thus, the oxygen input during solid-bed bioleaching can be reduced considerably by controlling the gas flow without loss of metal removal efficiency. Oxygen consumption rates, ranging from 0.4 x 10(-8) to 0.8 x 10(-8) Kg O2 Kg dm (-1) S(-1), are primarily attributed to high reactivity of the sulfur flower and high tolerance of indigenous autotrophic bacteria to low oxygen concentrations. The So related oxygen consumption was calculated assuming a molar yield coefficient Y O2/S of 1.21. The oxygen conversion degree, defined as part of oxygen feed consumed by So oxidation, increased from 0.7% to 68% when the oxygen supply was reduced from 150 to 0.5 mol O2 mol So (-1).  相似文献   
35.
In most real data situations in the one-way design both the underlying distribution and the shape of the dose-response curve are a priori unknown. The power of a trend test strongly depends on both. However, tests which are routinely used to analyze toxicological assays must be robust. We use nonparametric tests with different scores—powerful for different distributions—and different contrasts—powerful for different shapes—and use the maximum of all test statistics as a new test statistic. Simulation results indicate that this maximum test, which is a nonparametric multiple contrast test, stabilizes the power for various shapes and distributions. The investigated tests are applied to the data of a toxicological assay.  相似文献   
36.
37.
38.
39.
Kreja L  Seidel HJ 《Chemosphere》2002,49(1):105-110
The cytotoxicity of 13 microbial volatile organic compounds (MVOC) was studied using a human lung carcinoma epithelial cell line A549 in a colony formation assay and two colorimetric assays: the microculture tetrazolium assay (MTT assay) and the cellular protein assay (methylene blue-MB assay). For comparison, two known cytotoxic substances: the non-volatile mycotoxin gliotoxin and the mono-functional alkylating agent methyl methanesulfonate (MMS) were studied. Concentration-response curves for each agent were established and the IC50 value (concentration resulting in 50% inhibition of colony growth or absorbance) was estimated. There are differences in toxicity levels between the MVOC tested and gliotoxin and MMS. The most toxic MVOC was 1-decanol which was as effective as MMS in all test systems. 1-decanol was about 10-fold more toxic than the other MVOC. All MVOC tested were more than 1000-fold less toxic than gliotoxin.  相似文献   
40.
When a new drinking water regulation is being developed, the USEPA conducts a health risk reduction and cost analysis to, in part, estimate quantifiable and non-quantifiable cost and benefits of the various regulatory alternatives. Numerous methodologies are available for cumulative risk assessment ranging from primarily qualitative to primarily quantitative. This research developed a summary metric of relative cumulative health impacts resulting from drinking water, the relative health indicator (RHI). An intermediate level of quantification and modeling was chosen, one which retains the concept of an aggregated metric of public health impact and hence allows for comparisons to be made across “cups of water,” but avoids the need for development and use of complex models that are beyond the existing state of the science. Using the USEPA Six-Year Review data and available national occurrence surveys of drinking water contaminants, the metric is used to test risk reduction as it pertains to the implementation of the arsenic and uranium maximum contaminant levels and quantify “meaningful” risk reduction. Uranium represented the threshold risk reduction against which national non-compliance risk reduction was compared for arsenic, nitrate, and radium. Arsenic non-compliance is most significant and efforts focused on bringing those non-compliant utilities into compliance with the 10 μg/L maximum contaminant level would meet the threshold for meaningful risk reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号