首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   2篇
  国内免费   8篇
安全科学   7篇
废物处理   13篇
环保管理   29篇
综合类   31篇
基础理论   31篇
环境理论   1篇
污染及防治   91篇
评价与监测   28篇
社会与环境   24篇
灾害及防治   1篇
  2023年   4篇
  2022年   32篇
  2021年   15篇
  2020年   3篇
  2019年   11篇
  2018年   10篇
  2017年   17篇
  2016年   14篇
  2015年   5篇
  2014年   10篇
  2013年   26篇
  2012年   9篇
  2011年   13篇
  2010年   8篇
  2009年   17篇
  2008年   6篇
  2007年   8篇
  2006年   1篇
  2005年   10篇
  2004年   8篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1973年   1篇
  1962年   1篇
  1961年   1篇
  1959年   2篇
  1957年   1篇
  1954年   1篇
  1953年   1篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
141.
Environmental Science and Pollution Research - Energy consumption is widely regarded as the primary driver of economic development and environmental degradation. The current study examines how...  相似文献   
142.
Ozone degradation of a mixture containing methylparaben, ethylparaben, propylparaben, butylparaben and benzylparaben was carried out in aqueous solution. The degradation followed the pseudo-first-order kinetic model and occurs with two ozonation stages with the observed rate constants of second stage ozonation, k obs2, being higher than the observed rate constants in first stage, k obs1. The k obs1 of parabens was found to increase exponentially whilst k obs2 was found to maximize at 35°C. Both k obs1 and k obs2 were found to decrease exponentially with respect to the initial concentration of parabens. Both pH and ozone dose showed positive effects on the rate of degradation. It was also observed that an ozone dose of 0.67 g/h resulted in the removal of 99% of parabens in 12 min, and also the removal of 61 and 32% of chemical oxygen demand (COD) and total organic carbon (TOC), respectively, in 3 h of ozonation time for a 500 μM of solution of parabens.  相似文献   
143.
Lignin and its effects on litter decomposition in forest ecosystems   总被引:1,自引:0,他引:1  
Lignin is a major component of plant litter. In this review, we found lignin comprises a complex class of organic compounds whose concentration differs greatly both between and within plant species. There are many analytical methods for detecting the composition and structure of lignins. As lignins are enormously complex compounds, chemical assay is difficult and different methods vary with the results. Lignin plays a significant role in the carbon cycle, sequestering atmospheric carbon into the living tissues of woody perennial vegetation. It has also great effects on nitrogen dynamics of forest ecosystems as well as other ecological processes. Lignin is one of the most slowly decomposing components of dead vegetation, contributing a major fraction of the material that becomes humus as it decomposes. Lignin is highly correlated with decomposition of litter. Thus, there is evidence that the lignin concentration is a more influential factor than the other chemical concentrations, in determining the rate of leaf litter decomposition of different forest ecosystems. Although a great number of researchers have addressed lignin's role in litter decomposition, still there are many aspects of lignin biogeochemistry that are not known. This lack of information hinders complete amalgam of lignin effects on litter decomposition processes and dynamics of nutrient cycling.  相似文献   
144.
Static and dynamic adsorption studies of Co (II) ions have been undertaken at fixed pH and ionic strength taking binary biopolymeric beads of cross-linked calcium alginate and carboxy methylcellulose as biosorbents. The adsorption data were applied to Langmuir and Freundlich isotherm equations and various static parameters were calculated. The dynamic nature of adsorption process was quantified in terms of several kinetic constants such as rate constants for adsorption (K) and Lagergreen rate constant (K ad). The influence of various experimental parameters such as solid-to-liquid ratio, pH, and temperature, the presence of salts and chemical composition of biopolymeric beads were investigated on the adsorption of cobalt ions.  相似文献   
145.
Energy and environment are major global issues inducing environmental pollution problems. Energy generation from conventional fossil fuels has been identified as the main culprit of environmental quality degradation and environmental pollution. In order to address these issues, nanotechnology plays an essential role in revolutionizing the device applications for energy conversion and storage, environmental monitoring, as well as green engineering of environmental friendly materials. Carbon nanotubes and their hybrid nanocomposites have received immense research attention for their potential applications in various fields due to their unique structural, electronic and mechanical properties. Here, we review the applications of carbon nanotubes (1) in energy conversion and storage such as in solar cells, fuel cells, hydrogen storage, lithium ion batteries and electrochemical supercapacitors, (2) in environmental monitoring and wastewater treatment for the detection and removal of gas pollutants, pathogens, dyes, heavy metals and pesticides and (3) in green nanocomposite design. Integration of carbon nanotubes in solar and fuel cells has increased the energy conversion efficiency of these energy conversion applications, which serve as the future sustainable energy sources. Carbon nanotubes doped with metal hydrides show high hydrogen storage capacity of around 6?wt% as a potential hydrogen storage medium. Carbon nanotubes nanocomposites have exhibited high energy capacity in lithium ion batteries and high specific capacitance in electrochemical supercapacitors, in addition to excellent cycle stability. High sensitivity and selectivity towards the detection of environmental pollutants are demonstrated by carbon nanotubes based sensors, as well as the anticipated potentials of carbon nanotubes as adsorbent to remove environmental pollutants, which show high adsorption capacity and good regeneration capability. Carbon nanotubes are employed as reinforcement material in green nanocomposites, which is advantageous in supplying the desired properties, in addition to the biodegradability. This article presents an overview of the advantages imparted by carbon nanotubes in electrochemical devices of energy applications and green nanocomposites, as well as nanosensor and adsorbent for environmental protection.  相似文献   
146.
Environmental Geochemistry and Health - This study aimed to determine the status of groundwater contamination with faecal coliform and nitrate in the rural areas of Mardan district, Pakistan. Both...  相似文献   
147.
Implementing inherent safety throughout process lifecycle   总被引:3,自引:0,他引:3  
Inherent safety should be implemented as early as possible in the design life cycle, since the changes in process design are easier and cheaper the earlier they are done. The problem is, how to evaluate process alternatives in the terms of inherent safety in the early design phases, when much of the information is missing. In this paper the process life cycle phases and the possibilities of implementing and evaluating inherent safety are discussed. The applicability and accuracy of an inherent safety index method is presented by a case study.  相似文献   
148.
Comparison of inherent safety indices in process concept evaluation   总被引:6,自引:0,他引:6  
In conceptual design, process routes can be compared and ranked by using inherent safety indices. In this paper, some inherent safety index methods presented in literature are compared and their properties and limitations discussed. As a case study, an inherent safety evaluation of methyl methacrylate process routes is presented. Three index based inherent safety evaluation methods are compared with expert evaluations on methyl methacrylate process routes and their subprocesses. Also the index based inherent safety ranking of process routes is compared with an expert ranking.  相似文献   
149.
Recently developed shopping centres have become one of the main features of shopping activities in Jeddah. In fact the city of Jeddah experienced a surprising increase in the development of shopping centres during the last decade. Developers entered the land development process with the intention of realising profits from a long‐term investment, but a considerable number of shopping centres were developed on the basis of insufficient or no feasibility studies thereby underestimating or neglecting expected rate of return and occupancy. Spatially, shopping centres present distinctive spatial and rental value patterns. This article is concerned with explaining the supply side of shopping centres by examining the development process through which they were built. The analytical framework is based on discussing the interaction of three sets of variables: contextual factors, including land policy and market mechanisms; site characteristics, and the developer's characteristics.  相似文献   
150.
The application of micro-electrical discharge machining (micro-EDM) in deep-hole drilling is still limited due to the difficulty in flushing of debris and unstable machining. Present study introduces a simplistic analytical model to evaluate the effectiveness of low frequency workpiece vibration during the micro-EDM drilling of deep micro-holes. In addition, experimental investigation has been conducted to validate the model by studying the effects of workpiece vibration on machining performance, surface quality and dimensional accuracy of the micro-holes. The effect of vibration frequency and amplitude for three different settings of aspect ratios has been studied experimentally. Moreover, the vibration experiments have been conducted at different levels of gap voltages and capacitances in order to understand the effect of electrical parameters and effectiveness of low-frequency workpiece-vibration at different levels of discharge energies. It has been shown analytically that the effectiveness of low frequency workpiece vibration during micro-EDM drilling can be evaluated by a parameter ‘Kv’ (ratio of maximum acceleration of the vibrating plate in gravitational direction to gravitational acceleration ‘g’), which can be determined from the vibration frequency, amplitude and phase angle of the vibrating workpiece. The theoretical model reveals that for Kv > 1, the position of debris particles will be above the workpiece; thus can be flushed away from machined zone effectively. The experimental reasons for improved micro-EDM drilling performance at the setting of Kv > 1 are found to be the increased effective discharge ratio, reduced short-circuits and improved dielectric flushing. The experimental results also reveal that the low frequency vibration is more effective at the low discharge energy level, thus making it more suitable for micro-EDM. Considering the effect on both the machining characteristics and micro-hole accuracy parameters, vibration frequency of 750 Hz and amplitude of 1.5 μm was found to provide improved performance for the developed vibration device.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号