首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470篇
  免费   16篇
  国内免费   2篇
安全科学   10篇
废物处理   21篇
环保管理   124篇
综合类   71篇
基础理论   129篇
环境理论   1篇
污染及防治   87篇
评价与监测   19篇
社会与环境   20篇
灾害及防治   6篇
  2023年   5篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   14篇
  2018年   15篇
  2017年   18篇
  2016年   15篇
  2015年   13篇
  2014年   18篇
  2013年   43篇
  2012年   24篇
  2011年   26篇
  2010年   18篇
  2009年   22篇
  2008年   29篇
  2007年   25篇
  2006年   20篇
  2005年   17篇
  2004年   20篇
  2003年   11篇
  2002年   17篇
  2001年   8篇
  2000年   13篇
  1999年   4篇
  1998年   7篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   8篇
  1993年   5篇
  1992年   7篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   5篇
  1981年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有488条查询结果,搜索用时 640 毫秒
71.
Plant biomass and plant abundance can be controlled by aboveground and belowground natural enemies. However, little is known about how the aboveground and belowground enemy effects may add up. We exposed 15 plant species to aboveground polyphagous insect herbivores and feedback effects from the soil community alone, as well as in combination. We envisaged three possibilities: additive, synergistic, or antagonistic effects of the aboveground and belowground enemies on plant biomass. In our analysis, we included native and phylogenetically related range-expanding exotic plant species, because exotic plants on average are less sensitive to aboveground herbivores and soil feedback than related natives. Thus, we examined if lower sensitivity of exotic plant species to enemies also alters aboveground-belowground interactions. In a greenhouse experiment, we exposed six exotic and nine native plant species to feedback from their own soil communities, aboveground herbivory by polyphagous insects, or a combination of soil feedback and aboveground insects and compared shoot and root biomass to control plants without aboveground and belowground enemies. We observed that for both native and range-expanding exotic plant species effects of insect herbivory aboveground and soil feedback added up linearly, instead of enforcing or counteracting each other. However, there was no correlation between the strength of aboveground herbivory and soil feedback. We conclude that effects of polyphagous aboveground herbivorous insects and soil feedback add up both in the case of native and related range-expanding exotic plant species, but that aboveground herbivory effects may not necessarily predict the strengths of soil feedback effects.  相似文献   
72.
Gravity-driven preferential flow (fingering) can greatly affect how one fluid displaces another in the subsurface. We have studied the internal properties of these preferential flow paths for water, with and without surfactants, infiltrating into oil saturated porous media using synchrotron X-rays, and miniature tensiometers to characterize fluid content and pressure relationships. We also used a light transmission technique to visualize overall flow pattern. Capillary pressure and water content decrease behind the front, similar to fingers in air-dry sand, with quantitative differences for five different surfactants with surface tensions ranging from 4–21 g/s2. Using unstable flow theory, the finger widths, capillary pressure drops within the fingers, finger tip lengths, and finger splitting dynamics were scaled successfully with interfacial tension, fluid density, and the contact angle using the fingers in air–water systems as the reference.  相似文献   
73.
Malthusian overfishing and efforts to overcome it on Kenyan coral reefs   总被引:1,自引:0,他引:1  
This study examined trends along a gradient of fishing intensity in an artisanal coral reef fishery over a 10-year period along 75 km of Kenya's most populated coastline. As predicted by Malthusian scenarios, catch per unit effort (CPUE), mean trophic level, the functional diversity of fished taxa, and the diversity of gear declined, while total annual catch and catch variability increased along the fishing pressure gradient. The fishery was able to sustain high (approximately 16 Mg x km(-2) x yr(-1)) but variable yields at high fishing pressure due to the dominance of a few productive herbivorous fish species in the catch. The effect of two separate management strategies to overcome this Malthusian pattern was investigated: fisheries area closure and elimination of the dominant and most "competitive" gear. We found that sites within 5 km of the enforced closure showed significantly lower total catch and CPUE, but increased yield stability and trophic level of catch than predicted by regression models normalized for fishing effort. Sites that had excluded illegal beach seine use through active gear management exhibited increased total catch and CPUE. There was a strong interaction between closure and gear management, which indicates that, for closures to be effective at increasing catch, there must be simultaneous efforts at gear management around the periphery of the closures. We propose that Malthusian effects are responsible for the variation in gear and catch and that active management through reduced effort and reductions in the most competitive gear have the greatest potential to increase the functional and trophic diversity and per-person productivity.  相似文献   
74.
Ion-exchange resins (IER) offer alternative approaches to measuring ionic movement in soils that may have advantages over traditional approaches in some settings, but more information is needed to understand how IER compare with traditional methods of measurement in forested ecosystems. At the Bear Brook Watershed in Maine (BBWM), one of two paired, forested watersheds is treated bi-monthly with S and N (28.8 and 25.2kgha−1yr−1 of S and N, respectively). Both IER and ceramic cup tension lysimeters were used to study soil solution responses after ∼11 years of treatment. Results from both methods showed treatments resulted in the mobilization of base cations and Al, and higher SO4—S and inorganic N in the treated watershed. Both methods indicated similar differences in results associated with forest type (hardwoods versus softwoods), a result of differences in litter quality and atmospheric aerosol interception capacity. The correlation between lysimeter and IER data for individual analytes varied greatly. Significant correlations were evident for Na (r=0.75), Al (r=0.65), Mn (r=0.61), Fe (r=0.57), Ca (r=0.49), K (r=0.41) and NO3—N (r=0.59). No correlation was evident between IER and soil solution data for NH4—N and Pb. Both IER and soil solution techniques suggested similar interpretations of biogeochemical behavior in the watershed.  相似文献   
75.
Climate change is altering nutrient cycling within the Arctic Ocean, having knock-on effects to Arctic ecosystems. Primary production in the Arctic is principally nitrogen-limited, particularly in the western Pacific-dominated regions where denitrification exacerbates nitrogen loss. The nutrient status of the eastern Eurasian Arctic remains under debate. In the Barents Sea, primary production has increased by 88% since 1998. To support this rapid increase in productivity, either the standing stock of nutrients has been depleted, or the external nutrient supply has increased. Atlantic water inflow, enhanced mixing, benthic nitrogen cycling, and land–ocean interaction have the potential to alter the nutrient supply through addition, dilution or removal. Here we use new datasets from the Changing Arctic Ocean program alongside historical datasets to assess how nitrate and phosphate concentrations may be changing in response to these processes. We highlight how nutrient dynamics may continue to change, why this is important for regional and international policy-making and suggest relevant research priorities for the future.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01673-0.  相似文献   
76.
In situ ammonia removal in bioreactor landfill leachate   总被引:11,自引:0,他引:11  
Although bioreactor landfills have many advantages associated with them, challenges remain, including the persistence of NH(3)-N in the leachate. Because NH(3)-N is both persistent and toxic, it will likely influence when the landfill is biologically stable and when post-closure monitoring may end. An in situ nitrogen removal technique would be advantageous. Recent studies have shown the efficacy of such processes; however, they are lacking the data required to enable adequate implementation at field-scale bioreactor landfills. Research was conducted to evaluate the kinetics of in situ ammonia removal in both acclimated and unacclimated wastes to aid in developing guidance for field-scale implementation. Results demonstrate that in situ nitrification is feasible in an aerated solid waste environment and that the potential for simultaneous nitrification and denitrification (even under low biodegradable C:N conditions) in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. All rate data fit well to Monod kinetics, with specific rates of removal of 0.196 and 0.117 mgN/day-g dry waste and half-saturation constants of 59.6 and 147 mgN/L for acclimated and unacclimated wastes, respectively. Although specific rates of ammonia removal in the unacclimated waste are lower than in the acclimated waste, a relatively quick start-up of ammonia removal was observed in the unacclimated waste. Using the removal rate expressions developed will allow for estimation of the treatment times and volumes necessary to remove NH(3)-N from recirculated landfill leachate.  相似文献   
77.
78.
Soluble salts, nutrients, and pathogenic bacteria in feedlot-pen runoff have the potential to cause pollution of the environment. A 2-yr study (1998-1999) was conducted at a beef cattle (Bos taurus) feedlot in southern Alberta, Canada, to determine the effect of bedding material [barley (Hordeum vulgare L.) straw versus wood chips] and within-pen location on the chemical and bacterial properties of pen-floor runoff. Runoff was generated with a portable rainfall simulator and analyzed for chemical content (nitrogen [N], phosphorus [P], soluble salts, electrical conductivity [EC], sodium adsorption ratio [SAR], dissolved oxygen [DO], and pH) and populations of three groups of bacteria (Escherichia coli, total coliforms, total aerobic heterotrophs at 27 degrees C) in 1998 and 1999. Bedding had a significant (P < or = 0.05) effect on NH4-N concentration and load in 1999, SO4 load in 1998, SO4 concentration and load in 1999, and total coliforms in both years; where these three variables were higher in wood than straw pens. Location had a significant effect on EC and concentrations of total Kjeldahl nitrogen (TKN), Na, K, SO4, and Cl in 1998, and total coliforms in both years. These seven variables were higher at the bedding pack than pen floor location, indicating that bedding packs were major reservoirs of TKN, soluble salts, and total coliforms. Significantly higher dissolved reactive phosphorus (DRP), total P, and NH4-N concentrations and loads at the bedding pack location in wood pens in 1998, and a similar trend for TKN concentration in 1999, indicated that this bedding-location treatment was a greater source of nutrients to runoff than the other three bedding-location treatments. Bedding, location, and their interaction may therefore be a potential tool to manage nutrients, soluble salts, and bacteria in feedlot runoff.  相似文献   
79.
Jonathan M. H. Green  Gemma R. Cranston  William J. Sutherland  Hannah R. Tranter  Sarah J. Bell  Tim G. Benton  Eva Blixt  Colm Bowe  Sarah Broadley  Andrew Brown  Chris Brown  Neil Burns  David Butler  Hannah Collins  Helen Crowley  Justin DeKoszmovszky  Les G. Firbank  Brett Fulford  Toby A. Gardner  Rosemary S. Hails  Sharla Halvorson  Michael Jack  Ben Kerrison  Lenny S. C. Koh  Steven C. Lang  Emily J. McKenzie  Pablo Monsivais  Timothy O’Riordan  Jeremy Osborn  Stephen Oswald  Emma Price Thomas  David Raffaelli  Belinda Reyers  Jagjit S. Srai  Bernardo B. N. Strassburg  David Webster  Ruth Welters  Gail Whiteman  James Wilsdon  Bhaskar Vira 《Sustainability Science》2017,12(2):319-331
Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.  相似文献   
80.
Mineralization studies of natural steroid hormones (e.g., 17β-estradiol, E2) are performed in environmental incubators, usually under a constant temperature such as 20°C. In this paper, we present a microcosm protocol that quantified the mineralization of E2 in soils under field temperatures. The nine agricultural soils tested had a wide range of soil organic carbon (1.1 to 5.2%) and clay (9 to 57%) contents. The calculated time over which half of the applied E2 was mineralized (E2-½) ranged from 299 to 910 d, and total E2 mineralization at 48 d (E2-TOT48) ranged from 4 to 13%. In subsequent laboratory incubations, the same soils were incubated under a constant temperature of 20°C, as well as under cyclic temperatures of 14.5°C (14 h) and 11.5°C (10h), which was within the temperature extremes observed in the field microcosms. E2-½ ranged from 157 to 686 d at 20°C and from 103 to 608 d at the cyclic temperatures, with the E2-TOT48 ranging from 6 to 21% at 20°C and from 7 to 30% under cyclic temperatures. Despite the overall 6.75°C lower mean temperatures under the cyclic versus constant temperatures, E2 mineralization was stimulated by the temperature cycles in three soils. Regardless of the incubation, the same loamy sand soil always showed larger E2 mineralization than the other eight soils and this loamy sand soil also had the smallest E2 sorption. Current modeling approaches do not take into consideration the effects of temperature fluctuations in the field because the input parameters used to describe degradation are derived from laboratory incubations at a constant temperature. Across the eight soils, E2-½ was on average 1.7 times larger and E2-TOT48 was on average 0.8 times smaller under field temperatures than under a constant 20°C. Hence, we conclude that incubations at 20°C give a reasonable representation of E2 mineralization occurring under field conditions to be expected in a typical Prairie summer season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号