首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   45篇
  国内免费   369篇
安全科学   62篇
废物处理   51篇
环保管理   73篇
综合类   499篇
基础理论   183篇
污染及防治   323篇
评价与监测   35篇
社会与环境   34篇
灾害及防治   64篇
  2023年   29篇
  2022年   57篇
  2021年   39篇
  2020年   39篇
  2019年   27篇
  2018年   36篇
  2017年   45篇
  2016年   44篇
  2015年   68篇
  2014年   70篇
  2013年   94篇
  2012年   78篇
  2011年   104篇
  2010年   82篇
  2009年   50篇
  2008年   70篇
  2007年   50篇
  2006年   49篇
  2005年   49篇
  2004年   32篇
  2003年   26篇
  2002年   25篇
  2001年   21篇
  2000年   21篇
  1999年   26篇
  1998年   21篇
  1997年   12篇
  1996年   15篇
  1995年   21篇
  1994年   9篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有1324条查询结果,搜索用时 31 毫秒
991.
To better understand the characteristics and sources of water soluble ions (WSI) in North China Plain (NCP), fine particles (PM2.5) were simultaneously sampled at the summit (SM) and foot (FT) of Mount Tai during May 12th to June 24th, 2017. Ion chromatography analysis showed that concentration of WSI was lower at SM (22.26 ± 16.53 μg/m3) than that at FT (31.02 ± 21.92 μg/m3). The concentration and proportion of SO42? in total WSI were both lower than the values reported in previous studies. Daytime WSI concentrations were higher than that at nighttime at SM, while the opposite results were obtained at FT, possibly associated with more anthropogenic activities and higher boundary layer height (BLH) during daytimes. A severe pollution event occurred during June 14th – June 16th was documented at both FT and SM. Regional transport and topography-forced vertical transport along the slope of the mountain could explain the higher concentrations of pollutants at SM. The analyses also indicated that NH4+ existed mainly in the form of NH4HSO4 and NH4NO3, but (NH4)2SO4 could also exist, especially when emissions of NH4+ and NH3 were increased during daytime at FT. The results of principal component analysis (PCA) illustrated that secondary aerosols, coal/biomass burnings, sea-salts and crustal/soil dusts were the main sources at SM, and secondary aerosols and crustal/soil dusts contributed most at FT. Backward air-mass trajectories were classified into four clusters, of which air masses with the highest frequency and WSI concentrations were originated from the southwest with secondary ions (SO42-, NO3- and NH4+) as major pollutants.  相似文献   
992.
Bioaugmentation of denitrifying bacteria can serve as a promising technique to improve nutrient removal during wastewater treatment. While denitrification inhibition by bacterial quorum sensing (QS) in Pseudomonas aeruginosa has been indicated, the application of bacterial QS disruption to improve nitrate removal from wastewater has not been investigated. In this study, the effect of bioaugmentation of P. aeruginosa SD-1 on nitrate removal in sequencing batch reactors that treat nitrate rich wastewater was assessed. Additionally, the potential of a quorum sensing inhibitor (QSI) to improve denitrification following bacterial bioaugmentation was evaluated. Curcumin, a natural plant extract, was used as a QSI. The chemical oxygen demand (COD) and initial nitrate concentration of the influent were 700±20 mg/L and 200±10 mg/L respectively, and their respective concentrations in the effluent were 56.9±3.2 mg/L and 9.0±3.2 mg/L. Thus, the results revealed that bioaugmentation of P. aeruginosa SD-1 resulted in an increased nitrate removal to 82%±1%. Further, nitrate was almost completely removed following the addition of the QSI, and activities of nitrate reductase and nitrite reductase increased by 88%±2% and 74%±2% respectively. The nitrogen mass balance indicated that aerobic denitrification was employed as the main pathway for nitrogen removal in the reactors. The results imply that bioaugmentation and modulation of QS in denitrifying bacteria, through the use of a QSI, can enhance nitrate removal during wastewater treatment.  相似文献   
993.
In this study,the thermal stability of a Fe_2 O_3 catalyst for mercury oxidation was significantly improved by doping with Al_2 O_3.After 1 hr,the catalyst doped with 10 wt.% Al_2 O_3 still exhibited a mercury conversion efficiency of 70.9%,while the undoped sample even lost its catalytic activity.Doping with Al_2 O_3 retarded the collapse of the catalyst mesoporous structure during high-temperature calcination,and the doped samples maintained a higher specific surface area,smaller pore size,and narrower pore size distribution.Transmission electron microscope images revealed that after calcination at 350℃,the average size of the catalyst grains in Fe_2 O_3 was 23.4 nm;however,the corresponding values for 1%Al_2 O_3/Fe_2 O_3,3%Al_2 O_3/Fe_2 O_3,and 10%Al_2 O_3/Fe_2 O_3 were only 13.3,7.1,and 4.7 nm,respectively.Results obtained from X-ray diffraction and thermogravimetry coupled with differential scanning calorimetry confirmed that doping with Al_2 O_3 also retards the crystallization of the catalysts at high temperature,constraining catalyst grains to a smaller size.  相似文献   
994.
The current study analyzes the contribution of 10 water quality parameters (including pH, turbidity, conductivity, total dissolved solids (TDS), hardness, total organic carbon (TOC), alkalinity, calcium ions, chlorides and sulfates) to corrosion extent of stainless steel valves taken from different locations in a reverse osmosis system of a reclaimed water plant. The valves were in service for 5 years. Raman spectroscopy and X-ray photoelectron spectroscopy analyses are conducted to quantify corrosion products on different valves under various water quality conditions. On that basis, bivariate and multivariate regression analyses between the 10 water quality parameters and the corrosion extent of valve specimens (represented by metal loss percentage (MLP) values) are carried out to check the contribution of those water quality parameters to MLP. The results indicate that the proportions of metal oxides as corrosion products vary according to the corrosion extent of the valves. Although no linear correlation is found, all 10 water quality parameters except for pH show a significant positive correlation with the MLP values of the valve specimens. Moreover, results of multivariate regression suggest that the variation of MLP can be explained by turbidity, TDS, TOC and sulfates. A positive contribution of turbidity, TDS and TOC to MLP is observed, whereas the contribution of sulfates is negative. The results from the current work help to identify the reasons for water quality-induced failure of stainless steel equipment in RO systems.  相似文献   
995.
研究石墨烯对微生物生长的影响,深入探讨石墨烯和微生物之间的相互作用,对科学评估石墨烯的生态安全性具有重要的现实意义.本文研究了两种功能化石墨烯(氧化石墨烯和磺化石墨烯)对苯并[a]芘高效降解菌Paracoccus aminovorans HPD-2生长的影响,并采用扫描电子显微镜(SEM)、拉曼光谱及红外光谱技术深入探讨了石墨烯与菌HPD-2之间的作用机制.结果表明,两种石墨烯对菌HPD-2生长的影响与培养体系中营养水平有关,石墨烯的种类和浓度也是重要影响因素.低浓度石墨烯(0~10 mg·L~(-1))对菌HPD-2生长无影响,较高浓度石墨烯(100 mg·L~(-1))能够显著促进菌HPD-2的生长(p0.05).两种石墨烯均能促进菌HPD-2胞外聚合物的分泌.与菌HPD-2发生相互作用后,低浓度氧化石墨烯的D峰和G峰的相对强度比值(I_D/I_G)显著提高,结构无序性增加,较高浓度石墨烯与菌HPD-2发生了明显的相互作用,并在菌体表面存在一定程度的堆叠,细胞表面蛋白质、氨基酸和胞外多糖均参与了两者之间的相互作用;相比于氧化石墨烯,磺化石墨烯与菌HPD-2表面的作用较弱.研究结果有助于深入理解和科学评价石墨烯的微生物效应.  相似文献   
996.
营养盐基准是湖泊富营养化控制与管理的基础,目前多采用以生态分区为基础的基准确定方法.由于同一生态分区内湖泊间的差异性,对区域性湖泊营养盐基准的适用性需要做进一步的探究.本研究提出了基于响应关系的聚类方法(RCA),包括:(1)基于线性混合效应模型和平均绝对百分误差的层次聚类过程;(2)基于赤池信息准则(AIC)的模型选择过程.基于长时间数据的可得性,选择我国云贵湖区和东部湖区作为对象,采用RCA对叶绿素a与营养盐(总氮和总磷)之间的响应关系进行分析.结果发现,区域性响应关系对应的AIC值均为最高,模型权重均小于0.001,且可能导致生态谬误;表明区域性湖泊营养盐基准不能完全适用于生态分区内全部湖泊.该研究可为我国湖泊营养盐基准的空间尺度确定和浓度限值识别提供参考.  相似文献   
997.
采用一步法合成了SiO_2包覆型纳米零价铁(SiO_2-NZVI),并采用TEM,XRD,FTIR及EDS方法对其进行了表征,考察了SiO_2-NZVI对偶氮、蒽醌、三苯甲烷3种不同类型的染料溶液的脱色能力。表征结果表明:SiO_2-NZVI平均粒径为15~22 nm,SiO_2薄膜厚度均一,约为10 nm;SiO_2-NZVI中所含元素主要为Fe和Si,质量比为90.6∶9.4。实验结果表明:SiO_2-NZVI对3种染料溶液均具有脱色能力,在染料溶液质量浓度为100 mg/L、SiO_2-NZVI加入量为2 g/L、反应时间为35 min的条件下,对甲基橙、孔雀石绿、洋红溶液的脱色率分别为86.04%,97.50%,82.13%;SiO_2-NZVI相对于NZVI有更强的抗氧化能力,且酸性环境有利于SiO_2-NZVI对染料溶液的脱色。  相似文献   
998.
Stainless steels generally have extremely good corrosion resistance, but are still susceptible to pitting corrosion. As a result, corrosion scales can form on the surface of stainless steel after extended exposure to aggressive aqueous environments. Corrosion scales play an important role in affecting water quality. These research results showed that interior regions of stainless steel corrosion scales have a high percentage of chromium phases. We reveal the morphology, micro-structure and physicochemical characteristics of stainless steel corrosion scales. Stainless steel corrosion scale is identified as a podiform chromite deposit according to these characteristics, which is unlike deposit formed during iron corrosion. A conceptual model to explain the formation and growth of stainless steel corrosion scale is proposed based on its composition and structure. The scale growth process involves pitting corrosion on the stainless steel surface and the consecutive generation and homogeneous deposition of corrosion products, which is governed by a series of chemical and electrochemical reactions. This model shows the role of corrosion scales in the mechanism of iron and chromium release from pitting corroded stainless steel materials. The formation of corrosion scale is strongly related to water quality parameters. The presence of HClO results in higher ferric content inside the scales. Cl and SO42 − ions in reclaimed water play an important role in corrosion pitting of stainless steel and promote the formation of scales.  相似文献   
999.
Activated carbon (AC) is very effective for multi-pollutant removal; however, the complicated components in flue gas can influence each other''s adsorption. A series of adsorption experiments for multicomponents, including SO2, NO, chlorobenzene and H2O, on AC were performed in a fixed-bed reactor. For single-component adsorption, the adsorption amount for chlorobenzene was larger than for SO2 and NO on the AC. In the multi-component atmosphere, the adsorption amount decreased by 27.6% for chlorobenzene and decreased by 95.6% for NO, whereas it increased by a factor of two for SO2, demonstrating that a complex atmosphere is unfavorable for chlorobenzene adsorption and inhibits NO adsorption. In contrast, it is very beneficial for SO2 adsorption. The temperature-programmed desorption (TPD) results indicated that the binding strength between the gas adsorbates and the AC follows the order of SO2 > chlorobenzene > NO. The adsorption amount is independent of the binding strength. The presence of H2O enhanced the component effects, while it weakened the binding force between the gas adsorbates and the AC. AC oxygen functional groups were analyzed using TPD and X-ray photoelectron spectroscopy (XPS) measurements. The results reveal the reason why the chlorobenzene adsorption is less affected by the presence of other components. Lactone groups partly transform into carbonyl and quinone groups after chlorobenzene desorption. The chlorobenzene adsorption increases the number of C = O groups, which explains the positive effect of chlorobenzene on SO2 adsorption and the strong NO adsorption.  相似文献   
1000.
固定化微生物技术在废水处理中的研究进展   总被引:21,自引:0,他引:21  
介绍了固定化微生物的载体和制备方法,综述了固定化微生物技术近年来在废水处理中的应用现状,并提出今后的研究方向和发展前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号