首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   1篇
  国内免费   1篇
安全科学   1篇
废物处理   3篇
环保管理   3篇
综合类   19篇
基础理论   7篇
污染及防治   25篇
评价与监测   7篇
灾害及防治   1篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   10篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   5篇
  1995年   1篇
排序方式: 共有66条查询结果,搜索用时 187 毫秒
61.
The goal of this work was to identify the sources of copper loads in surface urban waters using principal component analysis under the aquatic parameters data evaluation approach. Water samples from the Irai and Iguacu rivers were collected monthly during a 12-month period at two points located upstream and downstream of a metropolitan region. pH, total alkalinity, dissolved chloride, total suspended solids, dissolved organic matter, total recoverable copper, temperature, and precipitation data provided some reliable information concerning the characteristics and water quality of both rivers. Principal component analysis indicated seasonal and spatial effects on copper concentration and loads in both environments. During the rainy season, non-point sources such as urban run-off are believed to be the major source of copper in both cases. In contrast, during the lower precipitation period, the discharge of raw sewage seems to be the primary source of copper to the Iguacu River, which also exhibited higher total metal concentrations.  相似文献   
62.
63.
64.
The use of a new material (MFPAN) for copper remotion from aqueous solution is reported. An industrial fibber polymer (FPAN) was modified by 1,3-dipolar cycloaddition to include tetrazole moieties, as pendant groups. A minimum ratio Cu/MPFAN is required to enable precipitation, suggesting a pseudo stoichiometry. Both polymer and metal can be quantitatively recovered from the precipitate by acidification. This recovery ensures a recyclable use of this new material.  相似文献   
65.
In the Salento peninsula (Puglia Region, South-East Italy), underground waters are a fundamental resource for the population because they constitute the principal reservoir for drinking water and irrigation. They are, however, affected by overexploitation. The risk factors in the Salento arise mainly from anthropic activities, especially tourism and agriculture (leaking wells, sewage and inadequate waste disposal procedures). The Southern Salento is recognized to be at high risk of pathologies characterised by oral-faecal transmission. From 2001 to 2009 the incidence of typhoid fever in the Salento was 12.11/100,000 inhabitants as against 2.91 in Italy. Enteritis caused by rotaviruses is an important cause of hospitalization of paediatric-aged children in the Salento, with high social costs. An effective monitoring system for the conservation and management of water bodies and the protection of public health is therefore fundamental. The present study sought to determine the microbiological and chemical-physical quality of groundwater in the Salento and to analyse the factors associated with contamination. The results indicated widespread pollution from salt and microbial contamination. Contamination from faecal microorganisms posed a significant risk of human infection in 100% of samples. Furthermore, the water was unsuitable even for irrigation in a high percentage of cases (31.8%), which is of considerable significance given that agriculture is one of the most important economic activities in the area under study. The high salt concentration was probably due to excessive extraction of water for intensive irrigation, especially in summer. Under these circumstances, some of mitigation activity is necessary. Furthermore, it would be advisable to decrease the pollution load from anthropic activities in the territory and to reduce water consumption in order to conserve groundwater resources especially.  相似文献   
66.

The wastes from the macro-fungus Agaricus bisporus were used as an eco-friendly and low-cost adsorbent for the treatment of colored effluents containing the recalcitrant dyes, acid red 97 (AR97) and crystal violet (CV). The macro-fungal waste presented an amorphous structure, composed of particles with different sizes and shapes. Also, it presents typical functional chemical groups of proteins and carbohydrates with a point of zero charge of 4.6. The optimum conditions for the dosage were found to be as follows: 0.5 g L−1 with an initial pH at 2.0 for the AR97 and 8.0 for the CV. From the kinetic test, it was found that it took 210 min and an adsorption capacity of 165 mg g−1 for the AR97. Concerning the CV kinetics, it took 120 min to reach the equilibrium and it achieved an adsorption capacity of 165.9 mg g−1. The Elovich model was the most proper model for describing the experimental data, achieving an R2 ≥ 0.997 and MSE ≤ 36.98 (mg g−1)2. The isotherm curves were best represented by the Langmuir model, predicting maximum adsorption capacity of 372.69 and 228.74 mg g−1 for the AR97 and CV, respectively. The process was spontaneous and favorable for both dyes. The ∆H0 values were 9.53 and 10.69 kJ mol−1 for AR97 and CV, respectively, indicating physical and endothermic adsorption. Overall, the wastes from Agaricus bisporus have the potential to adsorb cationic and anionic dyes, thus solving environmental problems related to water quality and residue disposal.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号