首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
废物处理   1篇
环保管理   6篇
综合类   8篇
基础理论   3篇
污染及防治   5篇
评价与监测   2篇
社会与环境   2篇
  2012年   4篇
  2011年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2002年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
排序方式: 共有27条查询结果,搜索用时 16 毫秒
11.
Dissolved organic nitrogen (DON) has been hypothesized to play a major role in N cycling in a variety of ecosystems. Our aim was to assess the seasonal and concentration relationships between dissolved organic carbon (DOC), DON, and NO3- within 102 streams and 16 lakes within catchments of differing complexity situated in Wales. Further, we aimed to assess whether patterns of land use, soil type, and vegetation gave consistent trends in DON and dissolved inorganic nitrogen (DIN) relationships over a diverse range of catchments. Our results reinforce that DON constitutes a significant component of the total dissolved N pool typically representing 40 to 50% of the total N in streams and lakes but sometimes representing greater than 85% of the total dissolved N. Generally, the levels of DON were inversely correlated with the concentration of DIN. In contrast to DIN concentrations, which showed distinct seasonality, DON showed no consistent seasonal trend. We hypothesize that this reflects differences in the bioavailability of these two N types. The amount of DON, DOC, and DIN was significantly related to soil type with higher DON export from Histosol-dominated catchments in comparison with Spodosol-dominated watersheds. Vegetation cover also had a significant effect on DON concentrations independent of soil type with a nearly twofold decrease in DON export from forested catchments in comparison with nonforested watersheds. Due to the diversity in catchment DON behavior, we speculate that this will limit the adoption of DON as a broad-scale indicator of catchment condition for use in monitoring and assessment programs.  相似文献   
12.
The Waquoit Bay Watershed ecological risk assessment was performed by an interdisciplinary and interagency workgroup. This paper focuses on the steps taken to formulate the analysis plan for this watershed assessment. The workgroup initially conducted a series of meetings with the general public and local and state managers to determine environmental management objectives for the watershed. The workgroup then decided that more information was needed on the impacts of six stressors: nutrient enrichment, physical alteration of habitat, altered freshwater flow, toxic chemicals, pathogens, and fisheries harvesting. Assessment endpoints were selected to establish the link between environmental management objectives, impacts of stressors, and scientifically measurable endpoints. The following assessment endpoints were selected: estuarine eelgrass cover, scallop abundance, finfish diversity and abundance, wetland bird distribution and abundance, piping plover distribution and abundance, tissue contaminant levels, and brook trout distribution and abundance in streams. A conceptual model was developed to show the pathways between human activities, stressors, and ecological effects. The workgroup analyzed comparative risks, by first ranking stressors in terms of their potential risk to biotic resources in the watershed. Then stressors were evaluated by considering the components of stressors (e.g., the stressor chemical pollution included both heavy metals and chlorinated solvents components) in terms of intensity and extensiveness. The workgroup identified nutrient enrichment as the major stressor. Nutrient enrichment comprised both phosphorus enrichment in freshwater ponds and nitrogen enrichment within estuaries. Because phosphorus impacts were being analyzed and mitigated by the Air Force Center for Environmental Excellence, this assessment focused on nitrogen. The process followed to identify the predominant stressor and focus the analyses on nitrogen impacts on eelgrass and scallops will serve as an example of how to increase the use of the findings of a watershed assessment in decision making.  相似文献   
13.
Data on content of (90)Sr, (137)Cs, (239,240)Pu and (3)H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the "Mayak" PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of (137)Cs, (90)Sr and (3)H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of "Mayak" PA waste transport by (90)Sr is distinctly traced as far as the area of the Irtysh and Ob confluence.  相似文献   
14.
An XeBr excilamp having a peak emission at 283 nm, and microwave UV lamps with peak emissions at 253.7 nm that also generate ozone, have been tested for ability to eradicate high populations of microbial vegetative cells and spores (of bacteria and fungi) artificially added to filter surfaces. The study examined the energy required to completely eradicate large populations on filter surfaces. It was found that both the excilamp and microwave UV lamps were effective at killing large populations on surfaces with killing efficiency dependant on the type of organism, and, whether present in its vegetative or spore forms. The main killing factor is UV radiation following short treatment times. It is considered that for longer irradiation periods that are required to facilitate complete destruction of surface microorganisms, ozone and other oxidising species produced by microwave UV lamps would act to enhance microbial destruction.  相似文献   
15.
16.
RTP "ATOMFLOT" is a civilian nuclear icebreaker base located on the Kola Bay of northwest Russia. The objectives of this study were to determine the distributions of man-made radionuclides in the marine environment adjacent to the base, to explain the form of the distributions in sediments and to derive information concerning the fate of radionuclides discharged from ATOMFLOT. Mean activity concentrations (d.w.) for surface sediment, of 63 Bq kg(-1 137Cs, 5.8 Bq kg(-1) 90Sr and 0.45 Bq kg(-1 239,240)Pu were measured. Filtered seawater activity levels were in the range of 3--6.9 Bq m(-3) 137Cs, 2.0-11.2 Bq m(-3) 90Sr, and 16-40 m Bq m(-3), 239,240Pu. Short-lived radionuclides were present at sediment depths in excess of 10cm indicating a high degree of sediment mixing. Correlations of radionuclide activity concentrations with grain-size appear to be absent; instead, the presence of relatively contaminated sediment appears to be related to the existence of radioactive particles.  相似文献   
17.
为了更好地推动和促进我省的环境保护工作,经加拿大社区学会成都分会、四川省企业管理干部培训中心和四川省环境保护局共同组织,于1991年10月14~11月9日在四川省四川省经济管理干部学院联合举办了为期一月的加拿大环境管理学习班。参加开学典礼的有四川省企业管理干部培训中心的各级领导、中加合作项目主任、四川省环境保  相似文献   
18.
19.
Ecological risk assessment (ERA) evaluates potential causal relationships between multiple sources and stressors and impacts on valued ecosystem components. ERAs applied at the watershed scale have many similarities to the place-based analyses that are undertaken to develop Total Maximum Daily Loads (TMDLs), in which linkages are established between stressors, sources, and water quality standards, including support of designated uses. TMDLs focus on achieving water quality standards associated with attainment of designated uses. In attempting to attain the water quality standard, many TMDLs focus on the stressor of concern rather than the ecological endpoint or indicators of the designated use that the standard is meant to protect. A watershed ecological risk assessment (WERA), at least in theory, examines effects of most likely stressors, as well as their probable sources in the watershed, to prioritize management options that will most likely result in meeting environmental goals or uses. Useful WERA principles that can be applied to TMDL development include: development and use of comprehensive conceptual models in the Problem Identification step of TMDLs; use of a transparent process for selecting Numeric Targets for TMDLs based on assessment endpoints derived from the management goal or designated use under consideration; analysis of co-occurring stressors likely to cause beneficial use impairment based on the conceptual model; use of explicit uncertainty analyses in the Linkage Analysis step of TMDL development; and frequent stakeholder interactions throughout the process. WERA principles are currently most applicable to those TMDLs in which there is no numeric standard and, therefore, indicators and targets need to be developed, such as many nutrient or sediment TMDLs. WERA methods can also be useful in determining TMDL targets in situations where simply targeting the water quality standard may re-attain the numeric criterion but not the broader designated use. Better incorporation of problem formulation principles from WERA into the TMDL development process would be helpful in improving the scientific rigor of TMDLs.  相似文献   
20.
McRae BH  Dickson BG  Keitt TH  Shah VB 《Ecology》2008,89(10):2712-2724
Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号