首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   4篇
安全科学   3篇
废物处理   1篇
环保管理   16篇
综合类   35篇
基础理论   49篇
污染及防治   36篇
评价与监测   7篇
社会与环境   3篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   9篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   11篇
  2008年   6篇
  2007年   15篇
  2006年   4篇
  2005年   6篇
  2004年   1篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1990年   1篇
  1989年   1篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1965年   1篇
  1964年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1955年   1篇
  1940年   2篇
  1937年   1篇
  1933年   1篇
排序方式: 共有150条查询结果,搜索用时 31 毫秒
71.
Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scales and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed, and new methods to improve the spatiotemporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions such as national totals on appropriate grids. The wide area of natural emissions is also summarized, and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example, by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date.

Implications: Emission data are probably the most important input for chemistry transport model (CTM) systems. They need to be provided in high spatial and temporal resolution and on a grid that is in agreement with the CTM grid. Simple methods to distribute the emissions in time and space need to be replaced by sophisticated emission models in order to improve the CTM results. New methods, e.g., for ammonia emissions, provide grid cell–dependent temporal profiles. In the future, large data fields from traffic observations or satellite observations could be used for more detailed emission data.  相似文献   

72.
73.
Ambient ozone, sulfur dioxide, and nitrogen dioxide data collected at 11 rural gaseous air pollution monitoring stations located throughout the Federal Republic of Germany (FRG) were characterized to provide a basis for investigating the effect these air pollutants may have on forest decline. For any given year, with the exception of the Waldhof site, the ozone monitoring sites did not experience more than 50 occurrences of hourly mean concentrations equal to or above 0.10 ppm. In most cases, the number of occurrences equal to or above 0.10 ppm at the FRG ozone monitoring sites was below the number experienced at a rural forested site located at Whiteface Mountain, New York. Several of the FRG monitoring sites experienced a large number of occurrences of hourly mean ozone concentrations between 0.08 and 0.10 ppm. Hof, Selb, Arzberg, and Waldhof experienced several occurrences of elevated levels of sulfur dioxide concentrations. The nitrogen dioxide 24-h mean concentrations were low for all sites. Because the 24-h mean data may mask the occurrence of a few high concentration events, it is not known if any of the sites that monitored nitrogen dioxide experienced short-term elevated concentrations. To gain further insight into the possible effect of pollutant mixtures on vegetation, future efforts should involve characterizing the timing of multi-pollutant exposures.  相似文献   
74.
We present an investigation on how economic and environmental assessment results change when different process options or evaluation settings are considered. As the main case study the production technology of methyl methacrylate (MMA) is investigated. Six commercial processes using different reaction routes are modelled and evaluated with respect to their economic and environmental performance. On these six base case models different process options and evaluation settings are considered and the resulting impacts on the assessment results are quantified. Major findings of the study are that the more decision-variables become fixed, the smaller becomes the impact of the decisions still to be taken—but not only with respect to the economic performance but also with regard to the environmental assessment result. Along the process development steps the potential impacts on the economic and environmental performance decrease to the same degree. The results obtained for the evaluation settings do not show such a systematic pattern as those for the process options. This finding indicates that decision makers face many options in the economic and especially the environmental assessment of chemical processes which might lead to quite different magnitudes in variability due to either the choice of method or the choice of method parameters. This paper demonstrates that the resulting variability might be crucial with respect to the decision making outcome.  相似文献   
75.
Previous palaeobotanical and palynological studies on coals from Euramerican Pennsylvanian (≡ Late Carboniferous) coal basins indicate a major change in coal-swamp floras, especially at the Westphalian–Stephanian (≈Kasimovian–Gzhelian, according to Geological Time Scale 2004) boundary. A flora dominated by arborescent lycophytes was replaced by a vegetation dominated by marattialean tree ferns in various Euramerican coal basins. Earlier combined palynological and organic geochemical studies on Westphalian/Stephanian coals and shales from the Saar-Nahe Basin (Germany) revealed that the distribution of aromatized arborane/fernane hydrocarbons in solvent extracts reflects the increasing importance of seed plants, especially cordaites (extinct group of gymnosperms), conifers and pteridosperms. However, the biological source of the precursor molecules could not be specified. To clarify if the arborane/fernane derivatives MATH, MAPH, DAPH 1, and DAPH 2 in Westphalian/Stephanian coals can be assigned to one of the three potential source plant groups, we analyzed coals, sediments and fossil plant remains from different Euramerican locations with respect to their biomarker composition and stable carbon isotopic composition. Thereby, stable carbon isotopic ratios showed only insignificant variations between Westphalian and Stephanian samples and proved to be an unsuitable tool to describe floral changes during the Westphalian/Stephanian of the Saar-Nahe Basin. In contrast, we were able to show for the first time that MATH, MAPH, DAPH 1 and DAPH 2 are prominent constituents only in extracts of cordaitean macrofossils and can therefore be regarded as biomarkers for this group of gymnosperms.  相似文献   
76.
A synopsis of the detailed temporal variation of the size and number distribution of particulate matter (PM) and its chemical composition on the basis of measurements performed by several regional research consortia funded by the U.S. Environmental Protection Agency (EPA) PM Supersite Program is presented. This program deployed and evaluated a variety of research and emerging commercial measurement technologies to investigate the physical and chemical properties of atmospheric aerosols at a level of detail never before achieved. Most notably these studies demonstrated that systematic size-segregated measurements of mass, number, and associated chemical composition of the fine (PM2.5) and ultrafine (PM0.1) fraction of ambient aerosol with a time resolution down to minutes and less is achievable. A wealth of new information on the temporal variation of aerosol has been added to the existing knowledge pool that can be mined to resolve outstanding research and policy-related questions. This paper explores the nature of temporal variations (on time scales from several minutes to hours) in the chemical and physical properties of PM and its implications in the identification of PM formation processes, and source attribution (primary versus secondary), the contribution of local versus transported PM and the development of effective PM control strategies. The PM Supersite results summarized indicate that location, time of day, and season significantly influence not only the mass and chemical composition but also the size-resolved chemical/elemental composition of PM. Ambient measurements also show that ultrafine particles have different compositions and make up only a small portion of the PM mass concentration compared with inhalable coarse and fine particles, but their number concentration is significantly larger than their coarse or fine counterparts. PM size classes show differences in the relative amounts of nitrates, sulfates, crustal materials, and most especially carbon as well as variations in seasonal and diurnal patterns.  相似文献   
77.
Speciation and toxicological relevance of manganese in humans   总被引:2,自引:0,他引:2  
Although manganese is an essential trace element, concerns are rising about the Mn exposure of humans being related to neurotoxic effects. This review summarizes several aspects of this topic to provide updated information on Mn related investigations, including chemical speciation of Mn-compounds. The paper starts with some chemical aspects of Mn and its compounds, enlightening oxidation states in general and in biological matrices. This is followed by considerations on natural sources of human exposure, on occupational sources and on anthropogenically caused environmental sources, for example from the use of methylcyclopentadienyl manganese tricarbonyl (MMT). Next, the paper deals with Mn levels in the human organism, showing normal Mn concentrations in various tissues or body fluids, and continues with the toxicology of Mn, i.e. absorption, distribution and excretion. Of specific concern is the transfer of Mn to the brain which is the relevant neurotoxic target. In this context, parallels and differences between primary and Mn-dependent Parkinsonism are discussed, concluding with a risk assessment and a consideration of susceptible groups. The main part of this review focuses on recent investigations on Mn speciation. Analytical problems and their solutions are also described for correct identification of relevant Mn-compounds in matrices of human origin. Finally, future needs are discussed, such as further investigations on those Mn-species which may overcome neural barrier control, on disease-modulated barrier control, on susceptibility to certain Mn-species, and on the interaction of Mn with Fe-homeostasis in the brain.  相似文献   
78.
Biochars are increasingly used as soil amendment and for C sequestration in soils. The influence of feedstock differences and pyrolysis temperature on biochar characteristics has been widely studied. However, there is a lack of knowledge about the formation of potentially toxic compounds that remain in the biochars after pyrolysis. We investigated biochars from three feedstocks (wheat straw, poplar wood, and spruce wood) that were slowly pyrolyzed at 400, 460, and 525°C for 5 h (straw) and 10 h (woodchips), respectively. We characterized the biochars' pH, electrical conductivity, elemental composition (by dry combustion and X-ray fluorescence), surface area (by N adsorption), water-extractable major elements, and cation exchange capacity (CEC). We further conducted differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to obtain information on the biochars' molecular characteristics and mineralogical composition. We investigated trace metal content, total polycyclic aromatic hydrocarbon (PAH) content, and PAH composition in the biochars. The highest salt (4.92 mS cm) and ash (12.7%) contents were found in straw-derived biochars. The H/C ratios of biochars with highest treatment temperature (HTT) 525°C were 0.46 to 0.40. Surface areas were low but increased (1.8-56 m g) with increasing HTT, whereas CEC decreased (162-52 mmol kg) with increasing HTT. The results of DSC and FTIR suggested a loss of labile, aliphatic compounds during pyrolysis and the formation of more recalcitrant, aromatic constituents. X-ray diffractometry patterns indicated a mineralogical restructuring of biochars with increasing HTT. Water-extractable major and trace elements varied considerably with feedstock composition, with trace elements also affected by HTT. Total PAH contents (sum of EPA 16 PAHs) were highly variable with values up to 33.7 mg kg; irrespective of feedstock type, the composition of PAHs showed increasing dominance of naphthalene with increasing HTT. The results demonstrate that biochars are highly heterogeneous materials that, depending on feedstock and HTT, may be suitable for soil application by contributing to the nutrient status and adding recalcitrant C to the soil but also potentially pose ecotoxicological challenges.  相似文献   
79.
Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non‐protected forests? We sought to assess the effectiveness of different national forest‐management regimes to safeguard forests outside protected areas. We compared 2000–2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi‐experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest‐management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest‐management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national‐level results. We interpreted our results in the context of the broader literature on decentralized, community‐based natural resource management, and our findings emphasize that the type and quality of community‐based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross‐national results are consistent with results from site‐ and regional‐scale studies that show forest‐management regimes that ensure stable land tenure and integrate local‐livelihood benefits with forest conservation result in the best forest outcomes.  相似文献   
80.
Changes in disturbance rates due to climate change may increase or decrease diversity, whereas permanent loss of habitat is generally believed to decrease diversity. It is, however, very likely that the effects of disturbances and habitat destruction interact. Understanding such combined effects is essential to predict the response of communities to global changes and in particular which functional types of species are most endangered. Using an individual-based spatially explicit community model, we investigate (1) whether diversity-disturbance curves alter when spatially uncorrelated or autocorrelated habitat destruction is added, and (2) which functional types of species are able to survive under these altered conditions. Model communities consisted of four functional types of species trading off between colonisation ability and competition strength. We found that habitat destruction may alter both height and shape of diversity-disturbance curves: maximum diversity at intermediate disturbance rates may shift to other disturbance rates or even split into two peaks giving rise to bimodal diversity-disturbance relationships with different sub-communities persisting at low and high disturbance rates. Diversity responded differentially depending on how the colonisation-competition trade-off was represented. Our results suggest that, for trade-offs in seed production rate, generally the best coloniser will better withstand the interacting effects of habitat destruction and changing disturbance rates; however, for trade-offs in mean dispersal distances, functional types characterized by intermediate abilities will perform best. We conclude that predictions of the impacts of changing disturbance rates on biodiversity depend on community structure and cannot be made without knowledge of concurrent permanent habitat destruction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号