首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12346篇
  免费   529篇
  国内免费   4447篇
安全科学   820篇
废物处理   798篇
环保管理   932篇
综合类   6855篇
基础理论   2036篇
环境理论   6篇
污染及防治   4410篇
评价与监测   467篇
社会与环境   433篇
灾害及防治   565篇
  2024年   1篇
  2023年   199篇
  2022年   579篇
  2021年   481篇
  2020年   359篇
  2019年   360篇
  2018年   483篇
  2017年   559篇
  2016年   523篇
  2015年   698篇
  2014年   964篇
  2013年   1277篇
  2012年   1019篇
  2011年   1191篇
  2010年   854篇
  2009年   847篇
  2008年   888篇
  2007年   695篇
  2006年   655篇
  2005年   482篇
  2004年   351篇
  2003年   437篇
  2002年   383篇
  2001年   312篇
  2000年   342篇
  1999年   399篇
  1998年   328篇
  1997年   312篇
  1996年   295篇
  1995年   260篇
  1994年   177篇
  1993年   157篇
  1992年   113篇
  1991年   94篇
  1990年   65篇
  1989年   54篇
  1988年   44篇
  1987年   19篇
  1986年   22篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   10篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
951.
The competition between submersed plants has been recognized as an important factor influencing the structure of plant communities in shallow lakes. The ability of different species to take up and store nutrients from the surrounding ambience varies, and hence plant community structure might be expected to affect the cycling of nutrients in lake ecosystems. In this study, the uptake of phosphorus by Hydrilla verticillata and Vallisneria natans was studied and compared in monoculture and competitive mixed-culture plantings. Results showed that for both studied species the phosphorus concentrations of different tissues and of whole plants was unaffected by competition. However, the quantity of phosphorus accumulated by whole plants of H. verticillata was significantly higher in mixture culture than in monoculture, while that of V. natans was lower in the mixed culture. The results indicated that H. verticillata has a competitive advantage over V. natans, when the two species are grown in competition, and is able to accumulate a greater quantity of phosphorus.  相似文献   
952.
Cleaning of hollow-fibre polyvinyl chloride (PVC) membrane with di erent chemical reagents after ultrafiltration of algal-rich water was investigated. Among the tested cleaning reagents (NaOH, HCl, EDTA, and NaClO), 100 mg/L NaClO exhibited the best performance (88.4% 1.1%) in removing the irreversible fouling resistance. This might be attributed to the fact that NaClO could eliminate almost all the major foulants such as carbohydrate-like and protein-like materials on the membrane surface, as confirmed by Fourier transform infrared spectroscopy analysis. However, negligible irreversible resistance (1.5% 1.0%) was obtained when the membrane was cleaning by 500 mg/L NaOH for 1.0 hr, although the NaOH solution could also desorb a portion of the major foulants from the fouled PVC membrane. Scanning electronic microscopy and atomic force microscopy analyses demonstrated that 500 mg/L NaOH could change the structure of the residual foulants on the membrane, making them more tightly attached to the membrane surface. This phenomenon might be responsible for the negligible membrane permeability restoration after NaOH cleaning. On the other hand, the microscopic analyses reflected that NaClO could e ectively remove the foulants accumulated on the membrane surface.  相似文献   
953.
Air and soil pollution from traffic has been considered as a critical issue to crop production and food safety, however, few efforts have been paid on distinguish the source origin of traffic-related contaminants in rice plant along highway. Therefore, we investigated metals (Pb, Cd, Cr, Zn and Cu) concentrations and stable Pb isotope ratios in rice plants exposed and unexposed to highway traffic pollution in Eastern China in 2008. Significant differences in metals concentrations between the exposed and unexposed plants existed in leaf for Pb, Cd and Zn, in stem only for Zn, and in grain for Pb and Cd. About 46% of Pb and 41% of Cd in the grain were attributed to the foliar uptake from atmosphere, and there were no obvious contribution of atmosphere to the accumulations of Cr, Zn and Cu in grain. Except for Zn, all of the heavy metals in stem were attributed to the root uptake from soil, although significant accumulations of Pb and Cd from atmosphere existed in leaf. This indicated that different processes existed in the subsequent translocation of foliar-absorbed heavy metals between rice organs. The distinct separation of stable Pb isotope ratios among rice grain, leaf, stem, soil and vehicle exhaust further provided evidences on the different pathways of heavy metal accumulation in rice plant. These results suggested that further more attentions should be paid to the atmospheric deposition of heavy metals from traffic emission when plan crop layout for food safety along highway.  相似文献   
954.
Chemical precipitation to form magnesium ammonium phosphate (MAP) is an effective technology for recovering ammonium nitrogen (NH4 +-N). In the present research, we investigated the thermodynamic modeling of the PHREEQC program for NH4 +-N recovery to evaluate the effect of reaction factors on MAP precipitation. The case study of NH4 +-N recovery from coking wastewater was conducted to provide a comparison. Response surface methodology (RSM) was applied to assist in understanding the relative significance of reaction factors and the interactive effects of solution conditions. Thermodynamic modeling indicated that the saturation index (SI) of MAP followed a polynomial function of pH. The SI of MAP increased logarithmically with the Mg2+/NH4 + molar ratio (Mg/N) and the initial NH4 +-N concentration (CN), respectively, while it decreased with an increase in Ca2+/NH4 + and CO3 2??/NH4 + molar ratios (Ca/N and CO3 2??/N), respectively. The trends for NH4 +-N removal at different pH and Mg/N levels were similar to the thermodynamic modeling predictions. The RSM analysis indicated that the factors including pH, Mg/N, CN, Ca/N, (Mg/N) (CO3 2??/N), (pH)2, (Mg/N)2, and (CN)2 were significant. Response surface plots were useful for understanding the interaction effects on NH4 +-N recovery.  相似文献   
955.
The temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in a sediment core from Lake Erhal in Southwest China using gas-chromatography/mass spectrometry (GC/MS) method.The total organic carbon (TOC) normalized total PAHs concentrations (sum of US Environmental Protection Agency proposed 16 priority PAHs) ranged from 31.9 to 269 μg/g dry weight (dw),and were characterized by a slowly increasing stage in the deeper sediments and a sharp increasing stage in the upper sediments.The PAHs in the sediments were dominated by low molecular weight (LMW) PAHs,suggesting that the primary source of PAHs was low- and moderate temperature combustion processes.However,both the significant increase in high molecular weight (HMW) PAHs in the upper sediments and the vertical profile of diagnostic ratios pointed out a change in the sources of PAHs from low-temperature combustion to high-temperature combustion.The ecotoxicological assessment based on consensus-based sediment quality guidelines implied that potential adverse biological impacts were possible for benzo(ghi)perylenelene and most LMW PAHs.In addition,the total BaP equivalent quotient of seven carcinogenic polycyclic aromatic hydrocarbons (BaA,CHr,BbF,BkF,BaP,DBA and INP) was 106.1 ng/g,according to the toxic equivalency factors.Although there was no great biological impact associated with the HMW PAlls,great attention should be paid to these PAH components based on their rapid increase in the upper sediments.  相似文献   
956.
Odorous compounds in the influent of a reclaimed water treatment plant (RWTP), consisting of coagulation, sedimentation, continuous micro-filtration (CMF), and chlorination in succession, in a north China city, were identified by combining flavor profile analysis (FPA) with sensory gas chromatograph-mass spectrometry (GC-MS). The sewery/swampy/septic odor with an odor intensity of 6.4 was found to be the major odor group in the RWTP influent, and the existence of well-known odorant including dimethyl disulfide, dimethyl trisulfide, indole and skatole were confirmed using GC-MS. The result of a spiking test showed that the intensity (3.6) of the sewery/swampy/septic odor caused by these four chemicals contributed to over 50% of the odor intensity of the influent. The FPA intensity for sewery/swampy/septic odor in the RWTP effluent was 3.8, showing that the treatment process was not efficient for the removal of odorants, particularly indole and skatole.  相似文献   
957.
The effect of crystal structure on photocatalytic activities of manganese oxides and underlying reaction mechanism were investigated.  相似文献   
958.
Visible light responsive N-F-codoped TiO2 photocatalysts exhibit a higher catalytic activity than N-doped TiO2 for the degradation of 4-chlorophenol due to the synergistic effect of nonmetal elements.  相似文献   
959.
The activities of CeO2 nanocubes calcined at different temperatures were tested for catalytic oxidation of o-xylene. Using CeO2 nanocubes as catalysts, complete catalytic oxidation of o-xylene was achieved below 210℃. The CeO2 nanomaterials were characterized by means of BET, X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). From the TEM images, all Ce02 nanocubes displayed cubic morphology irrespective of calcination temperature. The HRTEM images revealed that these nanocubes were enclosed by reactive {001}planes, which may contribute to the intrinsically catalytic property of o-xylene oxidation. The higher activity of Ce02 nanocubes calcined at 550℃ than those calcined at above 550℃ was attributed to their smaller crystallite size and larger surface area. The influences of reaction conditions were also studied, which found that a higher reaction temperature was necessary for complete catalytic oxidation of o-xylene at higher weight hourly space velocity (WHSV) and o-xylene concentration.  相似文献   
960.
To study how global warming and eutrophication affect water ecosystems, a multiplicative growth Monod model, modified by incorporating the Arrhenius equation, was applied to Lake Taihu to quantitatively study the relationships between algal biomass and both nutrients and temperature using long-term data. To qualitatively assess which factor was a limitation of the improved model, temperature variables were calculated using annual mean air temperature (AT), water temperature (WT), and their average temperature (ST), while substrate variables were calculated using annual mean total nitrogen (TN), total phosphorus (TP), and their weighted aggregate (R), respectively. The nine fitted curves showed that TN and AT were two important factors influencing algal growth; AT limited growth as algal photosynthesis is mainly carried out near the water surface; N leakage of phytoplankton and internal phosphorus load from sediment explains why TN was the best predictor of peak biomass using the Monod model. The fitted results suggest that annual mean algal biomass increased by 0.145 times when annual mean AT increased by 1.0℃. Results also showed that the more eutrophic the lake, the greater the effect AT had on algal growth. Subsequently, the long-term joint effect of annual temperature increase and eutrophication to water ecosystems can be quantitatively assessed and predicted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号