首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27381篇
  免费   179篇
  国内免费   144篇
安全科学   473篇
废物处理   1462篇
环保管理   3657篇
综合类   3576篇
基础理论   7928篇
环境理论   4篇
污染及防治   6141篇
评价与监测   2080篇
社会与环境   2274篇
灾害及防治   109篇
  2022年   117篇
  2021年   140篇
  2020年   114篇
  2019年   157篇
  2018年   1755篇
  2017年   1667篇
  2016年   1570篇
  2015年   378篇
  2014年   384篇
  2013年   1346篇
  2012年   944篇
  2011年   2046篇
  2010年   1357篇
  2009年   1197篇
  2008年   1685篇
  2007年   2065篇
  2006年   686篇
  2005年   601篇
  2004年   643篇
  2003年   687篇
  2002年   676篇
  2001年   728篇
  2000年   499篇
  1999年   291篇
  1998年   269篇
  1997年   225篇
  1996年   235篇
  1995年   251篇
  1994年   283篇
  1993年   230篇
  1992年   250篇
  1991年   227篇
  1990年   262篇
  1989年   242篇
  1988年   198篇
  1987年   173篇
  1986年   164篇
  1985年   176篇
  1984年   213篇
  1983年   200篇
  1982年   195篇
  1981年   186篇
  1980年   144篇
  1979年   159篇
  1978年   136篇
  1977年   120篇
  1975年   118篇
  1974年   116篇
  1973年   111篇
  1972年   134篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Markets for scrap tires have expanded since the early 1990s with the development of value-added applications such as tire-derived fuel and crumb-rubber-amended asphalt. Granulated tires have also displayed the ability to adsorb volatile organic compounds, indicating that the rubber material can be a useful filter media. Sand-based root zones, typically used for golf course putting green and athletic field construction, lack sufficient cation exchange capacity to restrict nitrogen and phosphorus migration through the root zone and into sub-surface drainage systems. Therefore, the adsorptive properties of tire rubber for retaining nitrogen and phosphorus were studied when applied as a distinct sub-surface drainage or intermediate layer in golf course putting greens. A statistically significant reduction in the concentration of nitrate in leachate was achieved by replacing traditional pea gravel with equally sized granulated tires for the drainage layer media, although the mechanism of nitrate mitigation remains unclear. The results indicate that using granulated tires as a drainage layer or fill material beneath sand-based root zones does not compromise the function of the profile or quality of the vegetation while creating an environmentally beneficial and value-added option for scrap tire reuse.  相似文献   
992.
The influence of a new aeration system on the biopile performance was investigated. The purpose was to increase biodegradation efficiency by optimising airflow through the pile. During a 1-month field trial, the performance of a new system using two perforated vertical pipes with wind-driven turbines was compared with that of a standard pile configuration with two horizontal perforated pipes. Both piles were composed of a similar mix of diesel-contaminated soils, woodchips, compost and NPK fertiliser. Hydrocarbons were recovered using solvent extraction, and determined both gravimetrically and by gas chromatography. Total heterotrophs, pH and moisture content were also assessed. Air pressure measurements were made to compare the efficiency of suction in the pipes. Results at the end of the experiment showed that there was no significant difference between the two piles in the total amount of hydrocarbon biodegradation. The normalised degradation rate was, however, considerably higher in the new system than in the standard one, suggesting that the vertical venting method may have improved the efficiency of the biological reactions in the pile. The pressure measurements showed a significant improvement in the suction produced by the new aeration system. However, many factors other than the airflow (oxygen supply) may influence and limit the biodegradation rates, including moisture content, age of contaminants and the climatic conditions. Additional experiments and modelling need to be carried out to explore further the new aeration method and to develop criteria and guidelines for engineering design of optimal aeration schemes in order to achieve maximum biodegradation in biopiles.  相似文献   
993.
A sequential extraction procedure was applied to two anaerobic methanogenic sludges (Eerbeek and Nedalco) to examine the speciation of micro- and macronutrients in the sludges after cobalt sorption by exposing the sludge to a 1 mM Co solution for 4 d at pH 7 and 30 degrees C. The effect of different physicochemical conditions on cobalt sorption was studied as well: effect of pH (6-8), effect of competition by a second trace element (Ni or Fe), modification of the granular matrix by glutaraldehyde or heat treatment, and EDTA (ethylenediaminetetraacetic acid) addition. Sorbed Co was found to distribute between the carbonates, organic matter + sulfides, and residual fractions. Cobalt adsorption resulted in an antagonistic interaction with other metals present in the granular matrix, evidenced by the solubilization of other trace elements (e.g., Ni, Cu, and Zn) as well as macronutrients (especially Ca and Fe). Modification of the sludge matrix by glutaraldehyde or heat treatment, or exposure to EDTA, led to serious modifications of the Co sorption capacity and strong interactions with multivalent cations (i.e., Ca(2+) and Fe(2+)).  相似文献   
994.
A growth room experiment was conducted to evaluate the bioavailability of Cu, Mn, Zn, Ca, Fe, K, Mg, P, S, As, B, Cd, Co, Cr, Hg, Mo, Na, Ni, Pb, and Se from a sandy loam soil amended with source-separated municipal solid waste (SSMSW) compost. Basil (Ocimum basilicum L.) and Swiss chard (Beta vulgaris L.) were amended with 0, 20, 40, and 60% SSMSW compost to soil (by volume) mixture. Soils and compost were sequentially extracted to fractionate Cu, Pb, and Zn into exchangeable (EXCH), iron- and manganese-oxide-bound (FeMnOX), organic-matter (OM), and structurally bound (SB) forms. Overall, in both species, the proportion of Cu, Pb, and Zn levels in different fractions followed the sequence: SB > OM > FeMnOX > EXCH for Cu; FeMnOX = SB > OM > EXCH for Pb; and FeMnOX > SB = EXCH > OM for Zn. Application of SSMSW compost increased soil pH and electrical conductivity (EC), and increased the concentration of Cu, Pb, and Zn in all fractions, but not EXCH Pb. Basil yields were greatest in the 20% treatment, but Swiss chard yields were greater in all compost-amended soils relative to the unamended soil. Basil plants in 20 or 40% compost treatments reached flowering earlier than plants from other treatments. Additions of SSMSW compost to soil altered basil essential oil, but basil oil was free of metals. The results from this study suggest that mature SSMSW compost with concentrations of Cu, Pb, Mo, and Zn of 311, 223, 17, and 767 mg/kg, respectively, could be used as a soil conditioner without phytotoxic effects on agricultural crops and without increasing the normal range of Cu, Pb, and Zn in crop tissue. However, the long-term effect of the accumulation of heavy metals in soils needs to be carefully considered.  相似文献   
995.
Ammonia (NH3) from confined animal feeding operations is emitted from several sources including lagoons, field applications, and houses. This paper presents studies that were conducted to evaluate NH3 emissions from swine finisher and sow animal houses in the southeastern USA. Management and climate variables including animal weight, feed consumption, housing gutter water temperature, total time fans operated per day, house air temperature, house ambient NH3 concentration, and animal numbers were measured to determine their individual and combined effect on NH3 emissions. Ammonia emissions varied on daily and seasonal bases with higher emissions during warmer periods. For finishers, the summertime housing emissions on a per-animal basis were 2.4 times higher than wintertime (7.0 vs. 3.3 g NH3 animal(-1) d(-1)) or 3.2 times higher when compared on an animal unit (AU) basis (1 AU = 500 kg) because of climate and animal size differences between measurement periods. For summertime, the emission factor for the finishing pigs was 7.8 times higher than for sows on an animal basis and 25.6 times higher on an AU basis. Simple models were developed for housing emissions based on (i) all measured factors that were independent of each other and (ii) on three commonly measured management factors. The two models explained 97 and 64%, respectively, of variations in emissions. Ammonia emissions were found to be somewhat less than other studies on the same type housing due to more representative housing concentration measurements and calibration of exhaust fans; thus, emission factors for these type houses will be less than previously thought.  相似文献   
996.
Dissolved phosphorus (DP) can be released from wetlands as a result of flooding or shifts in water column concentrations. Our objectives were to determine the long-term (1460 d) DP retention and release characteristics of an in-stream wetland, and to evaluate how these characteristics respond to flooding, draining, and changes in DP concentrations. The studied in-stream wetland drains an agriculturally intensive subwatershed in the North Carolina Coastal Plain region. The wetland's DP retention and release characteristics were evaluated by measuring inflow and outflow DP concentrations, DP mass balance, and DP movement across the sediment-water column interface. Phosphorus sorption isotherms were measured to determine the sediment's equilibria P concentration (EPCo), and passive samplers were used to measure sediment pore water DP concentrations. Initially, the in-stream wetland was undersized (0.31 ha) and released 1.5 kg of DP. Increasing the in-stream wetland area to 0.67 ha by flooding resulted in more DP retention (28 kg) and low outflow DP concentrations. Draining the in-stream wetland from 0.67 to 0.33 ha caused the release of stored DP (12.1 kg). Shifts both in sediment pore water DP concentrations and sediment EPCo values corroborate the release of stored DP. Reflooding the wetland from 0.33 to 0.85 ha caused additional release of stored DP into the outflowing stream (10.9 kg). We conclude that for a time period, this in-stream wetland did provide DP retention. During other time periods, DP was released due to changes in wetland area, rainfall, and DP concentrations.  相似文献   
997.
The release of P from lake sediments, which occurs as a part of internal loading, may contribute a significant portion of the total P load to a lake. Phosphorus release rates from sediments in Spring Lake, Michigan, and the degree to which alum reduces P release from these sediments, were investigated during the summer of 2003. Triplicate sediment cores were sampled from four sites in the lake, and exposed to one of four treatments in the laboratory: (i) aerobic water column/alum, (ii) aerobic water column/no alum, (iii) anaerobic water column/alum, or (iv) anaerobic water column/no alum. Total P (TP) release rates were virtually undetectable in the alum treatments (both aerobic and anaerobic). Low, but detectable, release rates were measured in the aerobic/no alum treatment. The highest release rates were measured in the anaerobic/no alum treatments, and ranged from 1.6 to 29.5 mg P m(-2) d(-1) depending on how the calculations were derived. These fluxes translated to mean internal loads that ranged between 2.7 (low range) and 6.4 (high range) Mg yr(-1) when extrapolated to a whole-lake basis. Internal P loads accounted for between 55 and 65% of the total P load to Spring Lake. Although alum is a potentially effective means of reducing the sediment source of P, there is considerable uncertainty in how long an alum treatment would remain effective in this system given the current rates of external loading and the lack of information on wind-wave action and bioturbation in Spring Lake.  相似文献   
998.
Because of the affinity of organic matter for lead, atmospheric loadings of this pollutant have been strongly retained in the forest floor. With the regulation of Pb emissions, loadings have decreased. We measured changes in Pb in forest floor horizons at a variety of northern hardwood sites in New Hampshire from the late 1970s to the 1990s. In all seven of the sites in which horizons were distinguished within the forest floor, Pb was found to be declining in the upper (Oie) horizon, but not in the underlying Oa and A horizons. At the Hubbard Brook Experimental Forest (HBEF), this loss from the Oie resulted in a 36% loss of Pb from the forest floor as a whole between 1976 and 1997 (p < 0.001). In contrast, in six stands in the Bartlett Experimental Forest (BEF), losses of Pb averaging >50% from the Oi and Oe horizons (p = 0.01) between 1979 and 1994 were compensated by gains in the Oa and A horizons. Similarly, at seven additional stands in the White Mountain National Forest, changes in the forest floor as a whole from 1980 to 1995 were not statistically significant (redistribution within the forest floor was not evaluated at these sites). Lead concentrations were highest in the Oe or Oie in the 1970s, but were highest in the Oa horizon in the 1990s. There was no significant pattern of Pb loss or retention as a function of stand age across all the sites.  相似文献   
999.
There is critical need for a practical indicator to assess the potential for phosphorus (P) movement from a given site to surface waters, either via surface runoff or subsurface drainage. The degree of phosphorus saturation (DPS), which relates a measure of P already adsorbed by a soil to its P adsorption capacity, could be a good indicator of that soil's P release capability. Our primary objective was to find a suitable analytical protocol for determining DPS and to examine the possibility of defining a threshold DPS value for Florida's sandy soils. Four farmer-owned dairy sprayfields were selected within the Suwannee River basin and soil profiles were randomly obtained from each site, as well as from adjacent unimpacted sites. The soil samples were divided either by horizon or depth, and DPS was determined for each soil sample using ammonium-oxalate (DPS(Ox)), Mehlich-1 (DPS(M1)), and Mehlich-3 (DPS(M3)) extracts. All methods of DPS calculations were linearly related to one another (r2 > 0.94). Relationships between water-soluble P and DPS indicate that the respective change points are: DPS(Ox) = 20%, DPS(M1) = 20%, and DPS(M3) = 16%. These relationships include samples from Ap, E, and Bt horizons, and various combinations thereof, suggesting that DPS values can be used as predictors of P loss from a soil irrespective of the depth of the soil within a profile. Taking into consideration the change points, confidence intervals, agronomic soil test values, and DPS values from other studies, we suggest replacing Mehlich-1 P values in the Florida P Index with the three DPS categories (DPS(M1) = <30, 30-60, and >60%) to assign different P loss ratings in the P Index.  相似文献   
1000.
Indian mustard [Brassica juncea (L.) Czern.] transgenics overexpressing ATP sulfurylase (APS plants) were shown previously to have higher levels of total thiols, S, and Se. The present study explores the effect of ATP sulfurylase overexpression on tolerance and accumulation of other metals, both oxyanions and cations, reasoning that some anions may react directly with ATP sulfurylase, while other ions may be bound by its thiol end products. The APS transgenics were compared with wild-type plants with respect to tolerance and accumulation of As, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V, W, and Zn, supplied individually in agar medium (seedlings) or in hydroponics (mature plants). At the seedling stage, APS transgenics were more tolerant than wild type to As(III), As(V), Cd, Cu, Hg, and Zn, but less tolerant to Mo and V. The APS seedlings had up to 2.5-fold higher shoot concentrations of As(III), As(V), Hg, Mo, Pb, and V, and somewhat lower Cr levels. Mature APS plants contained up to 2.5-fold higher shoot concentrations of Cd, Cr, Cu, Mo, V, and W than wild type. They also contained 1.5- to 2-fold higher levels of the essential elements Fe, Mo, and S in most of the treatments. Mature APS plants showed no differences in metal tolerance compared with the wild type. Overexpression of ATP sulfurylase may be a promising approach to create plants with enhanced phytoextraction capacity for mixtures of metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号