首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
安全科学   1篇
废物处理   2篇
环保管理   3篇
综合类   2篇
基础理论   11篇
污染及防治   22篇
评价与监测   4篇
社会与环境   6篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   10篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
21.
This paper focuses on the spatial distributional profiles of different species of the important micronutrient element, nitrogen (nitrite, nitrate and total nitrogen) in various coral-reef sedimentary environment of Lakshadweep Archipelago. The relative abundance of the three forms of nitrogen was in the order, total-N???nitrate-N???nitrite-N. Relatively very low levels of nitrite in the different microenvironments of the islands are an indication of a higher rate of nitrification, so as to produce thermodynamically most stable form of nitrogen, namely nitrate under the condition of well-oxygenated shallow coastal/lagoon waters. A lagoon-ward enrichment pattern of total nitrogen in the lagoon transects of Agathy, Minicoy, Kadamath and Kiltan Islands also reflected the fact that the rate and space available for nitrogen fixation in shallow zones of the lagoon are high. Further, the nitrogenous waste materials produced from the reefs and surrounding environments have limited exchange with the sea, and all these factors, together with the organic nitrogen retention capacity of sediment types, contribute to total nitrogen.  相似文献   
22.
23.
Removal of NOM in the different stages of the water treatment process   总被引:5,自引:0,他引:5  
Natural organic matter (NOM) is abundant in natural waters in Finland and in many ways affects the unit operations in water purification. In this study, the organic matter content in water in different stages of a full-scale treatment process over 1 year was measured. The full-scale treatment sequence, studied at the Rusko water treatment plant in Tampere, Finland, consisted of coagulation, flocculation, clarification by sedimentation or flotation, activated carbon (AC) filtration, and disinfection. High-performance size exclusion chromatography (HPSEC) was used for separation to determine changes in the humic substances content during the purification process. In addition, total organic carbon (TOC), KMnO4-number, and UV-absorbance at wavelength 254 nm (UV254) were measured. High molecular weight (HMW) matter was clearly easier to remove in coagulation and clarification than low molecular weight (LMW) matter. Furthermore, depending on the regeneration of the activated carbon filters, activated carbon filtration was effective to a degree but did not remove most of the lowest molecular weight compounds. Significant correlation was established among HPSEC, KMnO4, UV254 absorbance, and TOC. HPSEC proved to be a fast and relatively easy method to estimate NOM content in water and, in fact, gave more information than traditional methods on the type of NOM in a water sample. It also helped the process performance follow-up.  相似文献   
24.
In many freshwater ecosystems, the contents of NO3- and SO4(2-) have increased, whereas O2 has been depleted due to the increased acid and nutrient loads. These changes may affect carbon turnover and the dynamics of the major greenhouse gases CO2, CH4, and N2O. We studied the effects of O2, NO3-, and SO4(2-) availability on carbon mineralization, and fluxes of CO2, CH4, and N2O in the sediments of hyper-eutrophic Lake Kev?t?n, Finland. Undisturbed sediment cores from the deep (9 m) and shallow (4 m) profundal were incubated in a laboratory microcosm with oxic and anoxic water flows with NO3- or SO4(2-) concentrations of 0, 30, 100, 300, and 2000 microM. The carbon mineralization rate (i.e., the sum of released CO2-C and CH4-C) was not affected by the oxidants. However, the oxidants did change the pathways of carbon degradation and the release of CH4. All of the oxidants depressed CH4 fluxes in the shallow profundal sediments, which had low organic matter content. In the deep profundal sediments rich in organic matter, the CH4 release was reduced by O2 but was not affected by SO4(2-) (the effect of NO3- was not studied). There was an increase in N2O release as the overlying water NO3- concentration increased. Anoxia and highly elevated NO3- concentrations, associated with eutrophication, increased drastically the global warming potential (GWP) of the sedimentary gases in contrast to the SO4(2-) load, which had only minor effects on the GWP.  相似文献   
25.
This study describes the distribution of sewage pollution markers (faecal coliforms, Clostridium perfringens and faecal sterols) in seawater and marine sediments around Rothera Research Station, Antarctic Peninsula. Untreated sewage waste has been released from this site since 1975, creating the potential for long-term contamination of the benthic environment. Faecal coliform concentrations in seawater reached background levels within 300 m of the outfall. In sediment cores, both C. perfringens and faecal coliform concentrations declined with distance from the outfall, though C. perfringens persisted at greater depths in the sediment. High concentrations of 5beta(H)-cholestan-3beta-ol (coprostanol) relative to the corresponding 5alpha-epimer (cholestanol), indicative of sewage pollution, were only found in sediments within 200 m of the sewage outfall. This study has shown that sewage contamination is limited to the immediate vicinity of the sewage outfall. Nevertheless, a sewage treatment plant was installed in February 2003 to reduce this contamination further.  相似文献   
26.
Eutrophication has decreased the O(2) content and increased the NH(4)(+) availability in freshwaters. These changes may affect carbon and nitrogen transformation processes and the production of CH(4) and N(2)O, which are important greenhouse gases. We studied release of CH(4) and N(2)O from a eutrophic lake sediment under varying O(2) and NH(4)(+) conditions. Intact sediment cores were incubated in a laboratory microcosm with a continuous anoxic or oxic water flows containing 0, 50, 500, 5,000, or 15000 microM NH(4)(+). With the anoxic flow, the sediment released CH(4), up to 7.9 mmol m(-2)d(-1). With the oxic flow, the CH(4) emissions were small indicating limited CH(4) production and/or effective CH(4) oxidation. Addition of NH(4)(+) did not affect sediment CH(4) release, evidence that the CH(4) oxidizing bacteria were not disturbed by the extra NH(4)(+). The release of N(2)O from the sediment was highest, up to 7.6 micromol m(-2)d(-1), with the oxic flow without NH(4)(+) addition. Oxygen was the key factor regulating the production of NO(3)(-), which enabled denitrification and production of N(2)O. However, the highest NH(4)(+) addition increased nitrification and associated O(2) consumption causing a decrease in sediment O(2) content and in accumulation of NO(3)(-) and N(2)O, which were effectively reduced to N(2) in denitrification. In summary, sediment CH(4) and N(2)O dynamics are regulated more by the availability of O(2) than extra NH(4)(+). Anoxia in eutrophic lakes favouring the CH(4) production, is the major contributor to the atmospheric consequences of water eutrophication.  相似文献   
27.
There is an unprecedented production of plastic that is accelerating its disposal while affecting the fitness of the terrestrial as well as the aquatic environment. The term microplastics refers to plastic fragments that are less than 5 mm in size and are widely distributed in the environment. Therefore, the present study intends to explore the biological response of earthworms (Eisenia fetida) toward different concentrations of low-density polyethylene. E. fetida treated with low-density polyethylene concentration (Control), 250 mg kg−1, 1000 mg kg−1, 6000 mg kg−1, 12,000 mg kg−1, and 25,000 mg kg−1. The above ratios were thoroughly mixed with 1kg of artificial soil and tested for growth, reproduction (cocoons and hatchling count), and enzymatic activities namely superoxide dismutase, guaiacol peroxidase, glutathione-S-transferase, and glutathione reductase and molecular docking studies. No mortality was observed during the exposure period at any concentrations. On the 28th day, when compared to the control the highest decrease in body weight of earthworms was observed in 25,000 mg (28.4%) followed by 12,000 mg (12.2%) and 6000 mg (3.4%). The cocoon and hatchlings significantly declined as the dose of microplastics increases. Enzymatic activity such as SOD and POD showed declined trend as the dose increased, while GST and GR increased with an increase in microplastic concentrations on 28th day. Furthermore, molecular docking showed that LDPE can modulate the activity of all four enzymes significantly.  相似文献   
28.
Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.  相似文献   
29.
The impact of pesticides, namely thiobencarb (TBC), molinate (MOL) and chlorpyrifos (CPF), on soil microbial processes was studied in two Australian soils. Substrate induced respiration (SIR), substrate induced nitrification (SIN) and phosphatases and chitinase enzymatic activities were assessed during a 30-day microcosm study. The pesticides were applied to soils at recommended rates either alone, or as binary mixtures with TBC. Soil samples were sampled at 5, 15 and 30 days after pesticide treatments. Substrate induced respiration was only transiently affected by pesticides in both soils. In contrast, the process of indigenous nitrification was affected by the presence of pesticides in both soils, especially when the pesticides were applied as binary mixtures. Substrate induced nitrification increased with pesticides in the Griffith soil (except with MOL+TBC after 5 days) whereas SIN values were non-significantly different to the control on the Coleambally soil. The binary mixtures of pesticides with TBC resulted in a decrease in SIN in both soils, but the effects disappeared within 30 days. The enzymatic activities were not consistently affected by pesticides, and varied with the soil and pesticides studied. This study showed that, when applied at recommended application rates, TBC, MOL, and CPF (individually or as binary mixtures), had little or only transitory effects on the functional endpoints studied. However, further investigations are needed to assess the effect on microbial densities and community structure despite the low disturbance to the functions noted in this work.  相似文献   
30.
Denitrification in the river estuaries of the northern Baltic Sea   总被引:3,自引:0,他引:3  
Estuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland. Denitrification rates in the four river mouths varied between 330 and 905 micromol N m(-2) d(-1). The estuary bays at the Archipelago Sea and the Gulf of Bothnia had denitrification rates from 90 micromol N m(-2) d(-1) to 910 micromol N m(-2) d(-1) and from 230 micromol N m(-2) d(-1) to 320 micromol N m(-2) d(-1), respectively. Denitrification removed 3.6-9.0% of the total nitrogen loading in the river mouths and in the estuary bay in the Gulf of Finland, where the residence times were short. In the estuary bay with a long residence time, in the Archipelago Sea, up to 4.5% of nitrate loading and 19% of nitrogen loading were removed before entering the sea. According to our results, the sediments of the fast-flowing rivers and the estuary areas with short residence times have a limited capacity to reduce the nitrogen load to the Baltic Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号