首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   3篇
  国内免费   1篇
废物处理   9篇
环保管理   21篇
综合类   11篇
基础理论   37篇
污染及防治   55篇
评价与监测   24篇
社会与环境   22篇
  2023年   3篇
  2022年   12篇
  2021年   9篇
  2020年   2篇
  2019年   5篇
  2018年   11篇
  2017年   11篇
  2016年   9篇
  2015年   3篇
  2014年   8篇
  2013年   11篇
  2012年   12篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   9篇
  2007年   9篇
  2006年   11篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
  1962年   1篇
排序方式: 共有179条查询结果,搜索用时 93 毫秒
141.
Abstact The real time monitoring of some organophosphorus based pesticides is of great concern to environmentalists because the widespread use of pesticides is causing severe health hazards to all living beings and also hampering our ecological balance. The traditional methods of measurement of pesticide residues are time consuming, need sample pre-treatment, and lack desired specificity and accuracy. We have developed an amperometric biosensor for indirect measurement of the pesticide concentration precisely in ppb level. The method is based on the action of two enzymes namely acetylcholine esterase and choline oxidase which are uniquely immobilized in a polymeric porous network directly on the working electrode of a screen-printed sensor. Polyacrylamide matrix has been prepared by copolymerisation of acrylamide andN,N′-methylenebisacrylamide using Potassium peroxodisulphate (K2S2O8) as initiator. A linear relationship was obtained between the range of 0 to 10 ppb.  相似文献   
142.
Environmental Geochemistry and Health - Unfortunately, in the original publication of the article, Prof. Yong Sik Ok’s affiliation was incorrectly published. The author’s affiliation is...  相似文献   
143.
Environmental Science and Pollution Research - Nitrogen and phosphorous are important nutritional regulators for the growth of cyanobacteria, thereby having a significant impact in bloom formation...  相似文献   
144.
Environmental Fluid Mechanics - The results of an experimental study on the turbulence characteristics in flow over and downstream of an isolated bedform are presented. The vertical profiles of...  相似文献   
145.
Rapid surge of interest for carbon nanotube (CNT) in the last decade has made it an imperative member of nanomaterial family. Because of the distinctive physicochemical properties, CNTs are widely used in a number of scientific applications including plant sciences. This review mainly describes the role of CNT in plant sciences. Contradictory effects of CNT on plants physiology are reported. CNT can act as plant growth inducer causing enhanced plant dry biomass and root/shoot lengths. At the same time, CNT can cause negative effects on plants by forming reactive oxygen species in plant tissues, consequently leading to cell death. Enhanced seed germination with CNT is related to the water uptake process. CNT can be positioned as micro-tubes inside the plant body to enhance the water uptake efficiency. Due to its ability to act as a slow-release fertilizer and plant growth promoter, CNT is transpiring as a novel nano-carbon fertilizer in the field of agricultural sciences. On the other hand, accumulation of CNT in soil can cause deleterious effects on soil microbial diversity, composition and population. It can further modify the balance between plant-toxic metals in soil, thereby enhancing the translocation of heavy metal(loids) into the plant system. The research gaps that need careful attention have been identified in this review.  相似文献   
146.
Worldwide solid waste generation is nearly 1.3 billion tonnes/year, whereas in India 62 million tonnes of solid waste is generated per year by 377 million urban people. The increasing amount of solid waste in India, nearly 50% of which is organic matter, is the major concern for treatment and waste management. Several technologies are already in practice for the treatment of organic fraction of municipal solid waste (OFMSW) in India. It is important to assess the sustainability of these processes. In this study, the existing OFMSW technologies in India were examined. Case-study approach was taken for this purpose along with some published secondary reports. It was found that the selection of technology quite depends on the composition of the OFMSW. Food waste rich fractions are recommended for biomethanation, whereas the fractions rich in market waste and household waste are suitable for composting. Fractions rich in lignin and lignocellulosic materials are suitable for pyrolysis and gasification, whereas the rejects are to be sent for RDF preparation. Based on the findings, a sustainable framework has also been proposed, implementation of which may result in better waste management.  相似文献   
147.
Environment, Development and Sustainability - In order to solve regional ecological inequity in carbon emissions, building a balanced ecological compensation mechanism is paramountly important....  相似文献   
148.
This study investigated the effects of surface functional groups, cation exchange capacity (CEC), surface charge, sesquioxides and specific surface area (SSA) of three soil clay fractions (SCFs) (kaolinite–illite, smectite and allophane) on the retention of dissolved organic carbon (DOC) in soils. Physico-chemical properties of the SCFs before and after removing native carbon and/or sesquioxides were characterised, and the DOC adsorption–desorption tests were conducted by a batch method. Native organic carbon (OC)/sesquioxide removal treatments led to a small change in the CEC values of kaolinite–illite, but significant changes in those of smectite and allophane. The net negative surface charge increased in all samples with an increase in pH indicating their variable charge characteristics. The removal of native OC resulted in a slight increase in the net positive charge on soil clay surfaces, while sesquioxide removal increased the negative charge. Changes in the functional groups on the SCF surfaces contributed to the changes in CEC and zeta potential values. There was a strong relationship (R 2 = 0.93, p < 0.05) between the Langmuir maximum DOC adsorption capacity (Q max) and SSA. The Q max value also showed a moderately strong relationship (R 2 = 0.55, p < 0.05) with zeta potential (at pH 7). Q max was only poorly correlated with CEC and native OC content. Therefore, along with SSA, the surface charge and functional groups of SCFs played the key role in determining the adsorption affinity and hence retention of DOC in soils.  相似文献   
149.
A total maximum daily load for the Chesapeake Bay requires reduction in pollutant load from sources within the Bay watersheds. The Conestoga River watershed has been identified as a major source of sediment load to the Bay. Upland loads of sediment from agriculture are a concern; however, a large proportion of the sediment load in the Conestoga River has been linked to scour of legacy sediment associated with historic millpond sites. Clarifying this distinction and identifying specific segments associated with upland vs. channel sources has important implications for future management. In order to address this important question, we combined the strengths of two widely accepted watershed management models — Soil and Water Assessment Tool (SWAT) for upland agricultural processes, and Hydrologic Simulation Program FORTRAN (HSPF) for instream fate and transport — to create a novel linked modeling system to predict sediment loading from critical sources in the watershed including upland and channel sources, and to aid in targeted implementation of management practices. The model indicates approximately 66% of the total sediment load is derived from instream sources, in agreement with other studies in the region and can be used to support identification of these channel source segments vs. upland source segments, further improving targeted management. The innovated linked SWAT‐HSPF model implemented in this study is useful for other watersheds where both upland agriculture and instream processes are important sources of sediment load.  相似文献   
150.
Quazi S  Sarkar D  Datta R 《Chemosphere》2011,84(11):1563-1571
Although organoarsenical pesticides are being phased out, sites with high concentrations of organic arsenical residues still exist due to the long-term application of these pesticides. The biotic and abiotic speciation of dimethylarsinic acid (DMA) can result in the formation of inorganic arsenic (As) species. Oxidation state, retention, and thereby persistence, varies according to temporal changes, influencing the availability and toxicity of contaminants. The current greenhouse study aimed at evaluating temporal changes in the oxidation state of As, geochemical partitioning, and bioaccessibility. Four soils with varying physiochemical properties were contaminated with DMA at two concentrations (675 and 1500 mg kg−1 of As). Rice plants were grown for a 6 months period, following which, the soils were allowed to age. The operationally defined forms of As and its bioaccessibility was analyzed at 0, 6 months, 1 year, and 3 years. Changes in oxidation state of As were evaluated immediately after spiking and after 3 years of soil-pesticide equilibration. Results show that geochemical partitioning of As was affected significantly (P < 0.05) by soil type, loading rates, and equilibration time. Arsenic was bound mainly to the poorly-crystalline Fe/Al-oxyhydroxides in the soil. However, these interactions did not affect As bioaccessibility, presumably due to the dissolution of the bound fractions of As in the acidic stomach. While 74-94% of the total bioaccessible As was transformed to As(V), 4-19% was transformed to the more toxic As(III). This study indicates that although aging affected the geochemical partitioning of As in the soil, bioaccesibility was controlled by the gastric pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号