首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
安全科学   2篇
废物处理   4篇
环保管理   5篇
综合类   6篇
基础理论   9篇
污染及防治   12篇
评价与监测   7篇
社会与环境   4篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有49条查询结果,搜索用时 937 毫秒
21.
Eight conventions make up the biodiversity cluster of multilateral environmental agreements (MEAs) that provide the critical international legal framework for the conservation and sustainable use of nature. However, concerns about the rate of implementation of the conventions at the national level have triggered discussions about the effectiveness of these MEAs in halting the loss of biodiversity. Two main concerns have emerged: lack of capacity and resources and lack of coherence in implementing multiple conventions. We focused on the latter and considered the mechanisms by which international conventions are translated into national policy. Specifically, we examined how the Strategic Plan for Biodiversity 2011–2020 and the associated Aichi Biodiversity Targets have functioned as a unifying grand plan for biodiversity conservation. This strategic plan has been used to coordinate and align targets to promote and enable more effective implementation across all biodiversity-related conventions. Results of a survey of 139 key stakeholders from 88 countries suggests streamlining across ministries and agencies, improved coordination mechanisms with all relevant stakeholders, and better knowledge sharing between conventions could improve cooperation among biodiversity-related conventions. The roadmap for improving synergies among conventions agreed to at the 13th Convention on Biological Diversity's Conference of Parties in 2016 includes actions such as mechanisms to avoid duplication in national reporting and monitoring on conventions and capacity building related to information and knowledge sharing. We suggest the scientific community can actively engage and contribute to the policy process by establishing a science-policy platform to address knowledge gaps; improving data gathering, reporting, and monitoring; developing indicators that adequately support implementation of national plans and strategies; and providing evidence-based recommendations to policy makers. The latter will be particularly important as 2020 approaches and work to develop a new biodiversity agenda for the next decade is beginning.  相似文献   
22.
As a result of nuclear processing activities started back in the 1950s, the environment in the vicinity of the Y‐12 National Security Complex (Y‐12 NSC) in Oak Ridge, Tennessee, and surrounding watersheds has been contaminated by nearly 1,000 tons of elementary mercury. To comply with the state and federal surface water quality standards, a significant reduction in mercury concentration to parts‐per‐trillion levels has been proposed. In order to analyze the mercury cycle in the environment and provide forecasting capabilities for the flow and transport of mercury within the Upper East Fork Poplar Creek (UEFPC) watershed, an integrated surface and subsurface flow and transport model has been developed using the hydrodynamic and transport numerical package, MIKE, developed by the Danish Hydraulic Institute. The model has been constructed and calibrated using an extensive collection of historical records (i.e., hydrological data, and mercury concentration measurements in groundwater, soil, and sediment) obtained from the Oak Ridge Environmental Information System database. Daily fluctuations in stream flow, as a result of scattered rainfall, flooding, and flow augmentation, resuspend the contaminated streambed sediments and/or erode the polluted streambank soil and provide a secondary source of mercury to the creek. In order to investigate the significance of sediment‐mercury interactions on the fate and transport of mercury within the UEFPC study domain, simulations were performed for two different cases (i.e., with and without consideration of sediment‐mercury interactions). Computed total suspended solids and mercury concentrations at the integration point of the creek are compared with the corresponding historical records in both cases. As confirmed by the numerical simulations, a substantial portion of the mercury detected in the river is likely in the form of sediment particle–bound mercury (i.e., mercury particulates). © 2012 Wiley Periodicals, Inc.  相似文献   
23.
Seabirds have been particularly affected by invasive non-native species, which has led to the implementation of numerous eradication campaigns for the conservation of these keystone and highly vulnerable species. Although the benefits of eradication of invasive non-native species for seabird conservation have been demonstrated, the recovery kinetics of different seabird populations on islands after eradication remains poorly evaluated. We conducted long-term monitoring of the number of breeding pairs of seven seabird species on a small atoll, Surprise Island, New Caledonia (southwestern tropical Pacific). Marine avifauna of the island were surveyed yearly 4 years before to 4 years after rodent eradication (conducted in 2005), and we conducted multiple one-time surveys from ∼10 years before and ∼15 years after eradication. We sought to determine how different seabird species responded to the eradication of invasive rodents in an insular environment. Three species responded positively (two- to 10-fold increase in population size) to eradication with differences in lag time and sensitivity. The number of breeding pairs increased (effect sizes = 0.49–0.95 and 0.35–0.52) for two species over 4 years post-eradication due to immigration. One species had a longer (at least 5 years) response time than all others; breeding pairs increased for over 10 years after eradication. Long-term sampling was necessary to observe the responses of the seabird populations on the island because of the delayed response of a species to eradication not visible in the first years after eradication. Our results confirmed the positive effects of eradication of invasive non-native species on seabirds and emphasize the importance of mid- and long-term pre- and posteradication surveys to decipher the mechanisms of seabird recovery and confirm the benefits of eradication for conservation purposes.  相似文献   
24.
25.
Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max 相似文献   
26.

Depolymerization of polyethylene terephthalate (PET) is a promising technology for producing recycled monomers. Using a deep eutectic solvent (DES)-based catalyst, the PET glycolysis process produces bis-(2-hydroxyethylene terephthalate) (BHET). This recycled monomer reacts with isocyanate and forms polyurethane foam (PUF). The DES-based one-pot reaction is advantageous because it is a low-energy process that requires relatively lower temperatures and reduced reaction times. In this study, choline chloride/urea, zinc chloride/urea, and zinc acetate/urea based DESs were adopted as DES catalysts for glycolysis. Subsequently, the conversion of PET, BHET yield, and OH values were evaluated. Both filtered and unfiltered reaction mixtures were used as polyols for PUF polymerization after characterization of the acid and hydroxyl values of the polyols, as well as the NCO (–N=C=O) value of isocyanate. In the case of unfiltered reaction mixtures, PUF was obtained via a one-pot reaction, which exhibited higher thermal stability than PUF made from the filtered polyols. This outcome indicated that oligomeric BHET containing many aromatic moieties in unfiltered polyols contributes to the thermal stability of PUF. This environmentally friendly and relatively simple process is an economical approach for upcycling waste PET.

  相似文献   
27.
The dialdehyde glyoxal (ethanedial) is an increasingly used industrial chemical with potential occupational health risks. This study describes the development of a personal sampling methodology for the determination of glyoxal in workroom air. Among the compounds evaluated as derivatizing agents; N-methyl-4-hydrazino-7-nitrobenzofurazan (MNBDH), 1,2-phenylenediamine (OPDA), 1-dimethylaminonaphthalene-5-sulfonylhydrazine (dansylhydrazine, DNSH) and 2,4-dinitrophenylhydrazine (DNPH), DNPH was the only reagent that was suitable. Several different samplers were evaluated for sampling efficiency of glyoxal in workroom air using DNPH as derivatizing agent; in-house DNPH coated silica particles packed in two different types of glass tubes, impingers containing acidified DNPH solution, filter cassettes containing glass fibre filters coated with DNPH, a commercially available solid phase cartridge sampler originally developed for formaldehyde sampling (Waters Sep-Pak DNPH-silica cartridge), and the commercially available SKC UMEx 100 passive sampler originally developed for formaldehyde sampling. Aldehyde atmospheres for sampler evaluation were generated with an in-house made vapour atmosphere generator coupled to a sampling unit, with the possibility of parallel sampling. The resulting glyoxal-DNPH derivative was determined using both LC-UV and LC-APCI-MS with negative ionization. By far, the highest recovery of glyoxal was obtained employing one of the in-house DNPH coated silica samplers (93%, RSD = 3.6%, n = 12).  相似文献   
28.
The frequency of micronuclei (MN) and chromosome aberrations in anaphase-telophase (CAAT) was determined in root tips of the wetland macrophyte Bidens laevis exposed to environmentally relevant concentrations of endosulfan (0.01, 0.02, 0.5 and 5microg/L) for 48h. MN frequency varied from 0 in negative controls and plants exposed to 0.01microg/L endosulfan to 0-3 in plants exposed to 5microg/L. Moreover, a significant concentration-dependent increase of CAAT was observed. The higher proportion of laggards and vagrand chromosomes observed at 5microg/L would indicate that endosulfan interacts with the spindle interrupting normal chromosome migration. Endosulfan resulted genotoxic to B. laevis, a species of potential value for bioassays and in situ monitoring of environmental contamination by pesticides.  相似文献   
29.
30.
To evaluate the potential of halloysite nanotubes (HNT) as nanofiller for polylactide (PLA), various nanocomposites have been successfully produced by melt-blending the polyester matrix with HNT (HNT(QM)). HNT were also surface treated by silanization reaction with 3-(Trimethoxysilyl) propyl methacrylate (TMSPM). The morphology, thermal, tensile and impact strength properties of the nanocomposites containing 3?C12?% HNT were evaluated and compared to those of pristine (unfilled) PLA. The nanocomposites were characterized by higher rigidity (with Young??s modulus increasing with HNT loading), higher tensile strength (about 70?MPa at 6?% HNT(QM)), whereas the elongation at break and impact strength did not decrease. As demonstrated under dynamic solicitation (DMA), melt-blending PLA with HNT led to enhancement of storage modulus (E??) and offers the possibility to use PLA in applications requiring higher temperatures of utilization. However, with few exceptions, TGA and DSC measurements did not reveal important changes of thermal parameters. The surface silanization treatment proved to improve the quality of the nanofiller dispersion even at higher loading. As a result, good thermal stability associated to high tensile strength, and noticeable increases in impact properties were recorded. Furthermore, enhanced nucleating ability and crystallization kinetics of the PLA matrix were revealed as specific characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号