首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   3篇
  国内免费   2篇
安全科学   4篇
废物处理   22篇
环保管理   23篇
综合类   11篇
基础理论   35篇
污染及防治   71篇
评价与监测   26篇
社会与环境   12篇
  2023年   4篇
  2022年   11篇
  2021年   10篇
  2020年   3篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   8篇
  2015年   7篇
  2014年   12篇
  2013年   23篇
  2012年   8篇
  2011年   13篇
  2010年   6篇
  2009年   11篇
  2008年   14篇
  2007年   5篇
  2006年   9篇
  2005年   9篇
  2004年   7篇
  2003年   9篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1971年   1篇
  1966年   1篇
  1964年   1篇
  1962年   1篇
  1954年   1篇
排序方式: 共有204条查询结果,搜索用时 921 毫秒
11.
Fire risk evaluation using multicriteria analysis—a case study   总被引:2,自引:0,他引:2  
Forest fires are one of the major causes of ecological disturbance and environmental concerns in tropical deciduous forests of south India. In this study, we use fuzzy set theory integrated with decision-making algorithm in a Geographic Information Systems (GIS) framework to map forest fire risk. Fuzzy set theory implements classes or groupings of data with boundaries that are not sharply defined (i.e., fuzzy) and consists of a rule base, membership functions, and an inference procedure. We used satellite remote sensing datasets in conjunction with topographic, vegetation, climate, and socioeconomic datasets to infer the causative factors of fires. Spatial-level data on these biophysical and socioeconomic parameters have been aggregated at the district level and have been organized in a GIS framework. A participatory multicriteria decision-making approach involving Analytical Hierarchy Process has been designed to arrive at a decision matrix that identified the important causative factors of fires. These expert judgments were then integrated using spatial fuzzy decision-making algorithm to map the forest fire risk. Results from this study were quite useful in identifying potential “hotspots” of fire risk, where forest fire protection measures can be taken in advance. Further, this study also demonstrates the potential of multicriteria analysis integrated with GIS as an effective tool in assessing “where and when” forest fires will most likely occur.  相似文献   
12.
Harbour seals and harbour porpoises are top predator species from the North Sea, have long life spans and hence, are known to accumulate high levels of anthropogenic contaminants. To gain knowledge about the behaviour of naturally-produced compounds in these marine mammals, the biomagnification of naturally-produced methoxylated polybrominated diphenyl ethers (MeO-PBDEs) was assessed. The biomagnification of MeO-PBDEs (2′-MeO-BDE 68 and 6-MeO-BDE 47) was lower in harbour seals (all biomagnification factors (BMFs) < 1) compared to the same age–gender groups of the harbour porpoises (all BMFs > 1). This may indicate a better metabolic breakdown of MeO-PBDEs in harbour seals, as was previously suggested for polybrominated diphenyl ethers (PBDEs). In both predators, 6-MeO-BDE 47 had the highest concentrations (range: 45–483 ng/g lw and 2–38 ng/g lw for harbour porpoises and seals, respectively) compared to 2′-MeO-BDE 68 (range: 2–28 ng/g lw and 1–6 ng/g lw for harbour porpoises and seals, respectively). In general, the highest concentrations were found in juveniles, suggesting an increased biotransformation capacity with age or the influence of dilution by growth for both species. Here we show that naturally-produced brominated organic compounds can biomagnify and accumulate in North Sea top predators, although to a lesser extent than anthropogenic lipophilic contaminants, such as polychlorinated biphenyls (PCBs) or PBDEs.  相似文献   
13.
Abstract

A huge amount of inorganic acids can be produced and emitted with waste gases from integrated circuit manufacturing processes such as cleaning and etching. Emission of inorganic acids from selected semiconductor factories was measured in this study. The sampling of the inorganic acids was based on the porous metal denuders, and samples were then analyzed by ion chromatography. The amount of chemical usage was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County according to the Taiwan Environmental Protection Agency regulation. The emission factor is defined as the emission rate (kg/month) divided by the amount of chemical usage (L/month). Emission factors of three inorganic acids (i.e., hydrofluoric acid [HF], hydrochloric acid [HQ], and sulfuric acid [H2SO4]) were estimated by the same method. The emission factors of HF and HCl were determined to be 0.0075 kg/L (coefficient of variation [CV] = 60.7%, n = 80) and 0.0096 kg/L (CV = 68.2%, n = 91), respectively. Linear regression equations are proposed to fit the data with correlation coefficient square (R2) = 0.82 and 0.9, respectively. The emission factor of H2SO4, which is in the droplet form, was determined to be 0.0016 kg/L (CV = 99.2%, n = 107), and its R2 was 0.84. The emission profiles of gaseous inorganic acids show that HF is the dominant chemical in most of the fabricators.  相似文献   
14.
This study investigates the two‐dimensional transport of nanoscale iron particles (NIP) and lactate‐modified NIP (LMNIP) in homogeneous and heterogeneous porous media under typical pressurized groundwater flow conditions. A two‐dimensional bench‐scale test setup was developed and a series of experiments was conducted simulating homogeneous sand profile and two‐layer profile with two different sands. NIP and LMNIP at a concentration of 4 g/L were prepared in electrolyte simulating groundwater conditions and were injected at the inlet of the test setup under different pressure gradients (0.5. 0.8, 1, and 2 pounds per square inch). During the testing, effluent was collected and its volume and nanoiron concentrations were measured. At the end of the testing, soil cores were obtained at different distances from the inlet and were used to measure nanoiron concentrations and magnetic susceptibility values. Results showed that the transport of NIP and LMNIP was enhanced by increased pressure gradient. LMNIP transport occurred more uniformly as compared to bare NIP. The iron concentrations decreased with distance from the inlet to the outlet and increased from the top to the bottom of the test cell. The data indicate that, as the particles were transported, they underwent aggregation and sedimentation, which resulted in the observed non‐uniform spatial distribution of iron. The NIP and LMNIP transported through the high‐porosity and high‐permeability soil layer in the heterogeneous soil profile, implying that the transport occurred predominantly along the path of least resistance for the flow. Magnetic susceptibility values are found to have good correlation with the iron content in the soil and are helpful to characterize the transport of NIP and LMNIP. Overall, this study shows that the non‐uniform distribution of NIP and LMNIP occurs under two‐dimensional transport conditions and the soil heterogeneities can significantly impact the transport of NIP and LMNIP. The design of field delivery systems should consider such conditions and optimize the pressurized injection systems. © 2011 Wiley Periodicals, Inc.  相似文献   
15.
The purpose of this study was to develop simple, accurate, and inexpensive measurement protocols for dissolved organic nitrogen (DON) and dissolved non-reactive phosphorus (DNRP) at low levels in wastewater effluents. Two protocols are presented--one to measure DON exclusively, and the other to measure DON and DNRP simultaneously. Currently, DON and DNRP are calculated indirectly by subtracting the dissolved inorganic fractions from the total dissolved concentration, resulting in significant errors. To increase the accuracy of DON measurements, effluent sample pretreatment using ion exchange to remove nitrate was applied. Spectrometric methods were selected to measure the inorganic fractions-the second derivative UV spectroscopy method for nitrate, and the malachite green method for orthophosphate. These methods, combined with the optimized persulfate digestion of the samples, can be used to measure total dissolved nitrogen and phosphorus accurately. The measurement ranges attained were 0.05 to 3 mg N/L for DON and 0.01 to 0.5 mg P/L for DNRP.  相似文献   
16.
17.
Glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] expressing an insensitive 5-enolpyruvylshikimic acid-3-phosphate synthase (EPSPS) gene has revolutionized weed control in soybean production. The soybean nitrogen fixing symbiont, Bradyrhizobium japonicum, possesses a glyphosate-sensitive enzyme and upon exposure to glyphosate accumulates shikimic acid and hydroxybenzoic acids such as protocatechuic acid (PCA), accompanied with B. japonicum growth inhibition and death at high concentrations. In a series of greenhouse and field experiments, glyphosate inhibited nodulation and nodule leghemoglobin content of GR soybean. Glyphosate accumulated in nodules of field-grown GR soybean, but its effect on nitrogenase activity of GR soybean was inconsistent in field studies. In greenhouse studies, nitrogenase activity of GR soybean following glyphosate application was transiently inhibited especially in early growth stages, with the greatest inhibition occurring under moisture stress. Studies using bacteroid preparations showed that the level of glyphosate inhibition of bacteroid nitrogenase activity was related to in vitro glyphosate sensitivity of the B. japonicum strains. These studies indicate the potential for reduced nitrogen fixation in the GR soybean system; however, yield reductions due to this reduced N2 fixation in early stages of growth have not been demonstrated.  相似文献   
18.
In the present work, the leaves of Azadirachta indica (locally known as the Neem tree) in the form of a powder were investigated as a biosorbent of dyes taking aqueous Congo Red solution as a model system. The sorbent was made from mature Neem leaves and was investigated in a batch reactor under variable system parameters such as concentration of the aqueous dye solution, agitation time, adsorbent amount, pH, and temperature. An amount of 0.6 g of the Neem leaf powder (NLP) per litre could remove 52.0-99.0% of the dye from an aqueous solution of concentration 2.87 x 10(-2) mmol l(-1) with the agitation time increasing from 60 to 300 min. The interactions were tested with respect to both pseudo first-order and second-order reaction kinetics; the latter was found to be more suitable. Considerable intra-particle diffusion was found to occur simultaneously. The sorption process was in conformity with Langmuir and Freundlich isotherms yielding values of the adsorption coefficients in the following ranges: Freundlich n: 0.12-0.19, Kf: 0.1039-0.2648 L g(-1); Langmuir qm: 41.24-128.26 g kg(-1), b: 443.3-1898.0 l mmol(-1), which supported favourable adsorption. The Langmuir monolayer capacity (qm) was high and the values of the coefficient b indicated the equilibrium, dye + NLP = dye...NLP being shifted overwhelmingly towards adsorption. Thermodynamically, the sorption process was exothermic with an average heat of adsorption of -12.75 kJ mol(-1). The spontaneity of the sorption process was also confirmed by the favourable values of Gibbs energy (mean values: -1.09 to -1.81 kJ mol(-1)) and entropy of adsorption (range: -18.97 to -56.32 J mol(-1)K(-1)). The results point to the effectiveness of the Neem leaf powder as a biosorbent for removing dyes like Congo Red from water.  相似文献   
19.
The present study investigates the immobilization of Pb(II), Cd(II) and Ni(II) on clays (kaolinite and montmorillonite) in aqueous medium through the process of adsorption under a set of variables (concentration of metal ion, amount of clay, pH, time and temperature of interaction). Increasing pH favours the removal of metal ions till they are precipitated as the insoluble hydroxides. The uptake is rapid with maximum adsorption being observed within 180 min for Pb(II) and Ni(II) and 240 min for Cd(II). A number of available models like the Lagergren pseudo first-order kinetics, second-order kinetics, Elovich equation, liquid film diffusion and intra-particle diffusion are utilized to evaluate the kinetics and the mechanism of the immobilization interactions. Two isotherm equations due to Langmuir and Freundlich showed good fits with the experimental data. Kaolinite and montmorillonite have considerable Langmuir monolayer capacity with respect to Pb(II), Cd(II) and Ni(II), the values being in the range of 6.8-11.5mg/g (kaolinite) and 21.1-31.1mg/g (montmorillonite). The Freundlich adsorption capacity follows a similar order. The thermodynamics of the immobilization process indicates the same to be exothermic with Pb(II) and Ni(II), but endothermic with Cd(II). The interactions with Pb(II) and Ni(II) are accompanied by decrease in entropy and Gibbs energy while the endothermic immobilization of Cd(II) is supported by an increase in entropy and an appreciable decrease in Gibbs energy. The results have established good potentiality for kaolinite and montmorillonite to remove heavy metals like Pb(II), Cd(II) and Ni(II) from aqueous medium through adsorption-mediated immobilization.  相似文献   
20.
In the present study, lindane (1,2,3,4,5,6-hexachlorocyclohexane), methyl parathion (O-dimethylO-(4-nitro-phenyl) phosphorothioate) and carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) degradation potential of different enriched bacterial cultures were evaluated under various environmental conditions. Enriched cultures behaved differently with different pesticides. Degradation was more in a facultative anaerobic condition as compared to that in aerobic condition. A specific pesticide enriched culture showed maximum degradation of that pesticide irrespective of pesticides and environmental conditions. Lindane and endosulfan enriched cultures behaved almost similarly. Degradation of lindane by lindane enriched cultures was 75 +/- 3% in aerobic co-metabolic process whereas 78 +/- 5% of lindane degradation occurred in anaerobic co-metabolic process. Degradation of methyl parathion by methyl parathion enriched culture was 87 +/- 1% in facultative anaerobic condition. In almost all the cases, many intermediate metabolites were observed. However, many of these metabolites disappeared after 4-6 weeks of incubation. Mixed pesticide-enriched culture degraded all the three pesticides more effectively as compared to specific pesticide- enriched cultures. It can be inferred from the results that a bacterial consortium enriched with a mixture of all the possible pesticides that are present in the site seems to be a better option for the effective bioremediation of multi-pesticide contaminated site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号