Objective: To examine the role of intent and other theory of planned behavior (TPB) constructs in predicting college students' willingness to text while driving (TWD).
Methods: This was a cross-sectional study. 243 male and female college students enrolled in the 2013–2014 academic year in the College of Health, Human Services & Nursing completed a survey on TWD. Inclusion criteria: All races and ethnicities, ≥18 years of age, cell phone owner, and licensed driver.
Results: Over 70% of the sample (n = 243) reported talking on a cell phone and sending and receiving text messages “at least a few times” while driving within the past week. However, only 27% reported being stopped by police. Of these, 22% reported being fined. Within the past 30 days, 26% reported reading or sending TWD and having to slam on the brakes to avoid hitting another car or pedestrian(s) as a result. In all, 47% of the variance in intention to send TWD was accounted for by the full TPB model. Intention, in turn, predicted willingness to TWD. Intention also mediated the relationship between perceived behavioral control and willingness to TWD.
Conclusion: Attitude was found to be the strongest predictor of intention. In addition, intention was found to mediate the relationship of willingness to TWD on perceived behavioral control. These findings highlight potential factors that could be targeted in behavioral change interventions seeking to prevent TWD. 相似文献
Scientific evidence gathered over the past five years suggests that northern Canada and the Arctic have undergone, and are
undergoing, formidable environmental changes linked to global climate change. Environmental change in the north is expected
to persist and intensify over the course of the next century. When large-scale environmental changes take place, they inevitably
affect people, especially when the cultures and livelihoods of those people depend on their relationship with the environment.
Managing the local impacts of these changes is a matter of adaptation. This paper discusses some of the policy implications
of adaptation––government interventions aiming to build communities’ and regions’ capacities to adapt to environmental changes.
Three arguments for adaptive capacity building interventions in the north are discussed, and these arguments are augmented
by a comparative review of government reactions to the collapse of the cod fishery in Atlantic Canada. Reactive and proactive
policy approaches are discussed, and it is suggested from the comparison that proactive approaches to intervention are desirable
for building adaptive capacity.
This study was designed to test the usefulness of the common definitions for maternal cell contamination, true mosaicism, and pseudomosaicism for amniotic fluid specimens processed by in situ culture and robotic harvesting. We prospectively studied 4309 consecutive amniotic fluid specimens processed with these methods and found that 0.84 per cent had maternal cell contamination, 0.28 per cent had true mosaicism, and 5.4 per cent had pseudomosaicism. Although the frequencies of maternal cell contamination and true mosaicism were comparable to those in similar published studies, the frequency of pseudomosaicism was more than twice as high as that in previous reports. This finding is most likely not due to the method, but rather to a more accurate estimate of the actual frequency of pseudomosaicism in amniotic fluid cultures than reported heretofore. Follow-up clinical information was available on 72 per cent of the cases. In three cases of true mosaicism involving structural anomalies, the results of cytogenetic follow-up studies on the neonates were normal. None of the pseudomosaic cases involving trisomy 8, 13, 18, or 21; triple X; or monosomy X were associated with newborns who had birth defects. 相似文献
U.S. EPA Region IX is supporting bioassessment programs in Arizona, California, Hawaii and Nevada using biocriteria program and Regional Environmental Monitoring and Assessment Program (R-EMAP) resources. These programs are designed to improve the state, tribal and regional ability to determine the status of water quality. Biocriteria program funds were used to coordinate with Arizona, California and Hawaii which resulted in these states establishing reference conditions and in developing biological indices. U.S. EPA Region IX has initiated R-EMAP projects in California and Nevada. These U.S. EPA Region IX sponsored programs have provided an opportunity to interact with the States and provide them with technical and management support. In Arizona, several projects are being conducted to develop the State's bioassessment program. These include the development of a rotational random monitoring program; a regional reference approach for macroinvertebrate bioassessments; ecoregion approach to testing and adoption of an alternate regional classification system; and development of warm-water and cold-water indices of biological integrity. The indices are projected to be used in the Arizona Department of Environmental Quality (ADEQ) 2000 water quality assessment report. In California, an Index of Biological Integrity (IBI) has been developed for the Russian River Watershed using resources from U.S. EPA's Non-point Source (NPS) Program grants. A regional IBI is under development for certain water bodies in the San Diego Regional Water Quality Control Board. Resources from the U.S. EPA Biocriteria program are being used to support the California Aquatic Bioassessment Workgroup (CABW) in conjunction with the California Department of Fish & Game (CDFG), and to support the Hawaii Department of Health (DoH) Bioassessment Program to refine biological metrics. In Nevada, R-EMAP resources are being used to create a baseline of aquatic information for the Humboldt River watershed. U.S. EPA Region IX is presently working with the Nevada Division of Environmental Protection (NDEP) to establish a Nevada Aquatic Bioassessment Workgroup. Future R-EMAP studies will occur in the Calleguas Creek watershed in Southern California, and in the Muddy and Virgin River watersheds in southern Nevada, and the Walker River watershed in eastern California and west-central Nevada. 相似文献
Forest biodiversity policies in multi-ownership landscapes are typically developed in an uncoordinated fashion with little consideration of their interactions or possible unintended cumulative effects. We conducted an assessment of some of the ecological and socioeconomic effects of recently enacted forest management policies in the 2.3-million-ha Coast Range Physiographic Province of Oregon. This mountainous area of conifer and hardwood forests includes a mosaic of landowners with a wide range of goals, from wilderness protection to high-yield timber production. We projected forest changes over 100 years in response to logging and development using models that integrate land use change and forest stand and landscape processes. We then assessed responses to those management activities using GIS models of stand structure and composition, landscape structure, habitat models for focal terrestrial and aquatic species, timber production, employment, and willingness to pay for biodiversity protection. Many of the potential outcomes of recently enacted policies are consistent with intended goals. For example, we project the area of structurally diverse older conifer forest and habitat for late successional wildlife species to strongly increase. 'Other outcomes might not be consistent with current policies: for example, hardwoods and vegetation diversity strongly decline within and across owners. Some elements of biodiversity, including streams with high potential habitat for coho salmon (Oncorhynchus kisutch) and sites of potential oak woodland, occur predominately outside federal lands and thus were not affected by the strongest biodiversity policies. Except for federal lands, biodiversity policies were not generally characterized in sufficient detail to provide clear benchmarks against which to measure the progress or success. We conclude that land management institutions and policies are not well configured to deal effectively with ecological issues that span broad spatial and temporal scales and that alternative policies could be constructed that more effectively provide for a mix of forest values from this region. 相似文献
Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between detecting the effects of inbreeding depression on a component vital rate (e.g., fecundity) and the effects of inbreeding depression on population growth underscores the importance of quantifying inbreeding costs relative to population dynamics to effectively manage endangered populations. 相似文献
In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs. 相似文献